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A Stefan Problem With Contact 
Resistance 
A Stefan problem in which a semi-infinite molten material at the fusion temperature 
solidifies as a result of imperfect thermal contact with a cooler semi-infinite solid is 
considered. The contact resistance, due to surface roughness, is modeled by a con-
vective boundary condition. Biot's variational principle is used to reduce the cou
pled partial differential equations to a pair of coupled ordinary differential equa
tions that are solved numerically. The position of the moving boundary as a func
tion of time is given for both bismuth and aluminum solidifying on stainless steel. 

Introduction 

For phase-change or Stefan problems, the presence of a 
solid-liquid interface that moves as latent heat is absorbed or 
released introduces a nonlinearity into the boundary condi
tions of the one-dimensional conduction equation 

d2T 1 dT 

the moving phase-change interface X(t). The dimensionless 
ratio of sensible heat to latent heat a c(T, - Tref)/L, 

dx2 dt 

The position of this moving boundary is not known in advance 
and must be determined as part of the solution. Consequently, 
there are few exact analytical solutions available for phase-
change problems, and approximate analytical or numerical 
solution techniques must often be used. 

The phase-change problem discussed here involves a semi-
infinite liquid, uniformly at its fusion temperature, which 
solidifies as a result of thermal contact with a cooler semi-
infinite solid. If the contact is perfect, there is no resistance to 
heat transfer at the interface of the two media, and the 
temperature is continuous there. This idealized problem is 
straightforward to solve. 

From an engineering standpoint, however, it is more 
realistic to include the effects of imperfect thermal contact due 
to surface roughness, which creates a resistance to heat 
transfer known as contact resistance. This can be modeled by 
a convective boundary condition, which gives rise to a discon
tinuity in temperature at the interface. The problem we solve 
here includes contact resistance, which better describes such 
situations as the solidification of a molten material by contact 
with a "thick" mold. 

The case of imperfect thermal contact can be set in the con
text of the eight related problems displayed in Fig. 1. The 
problems on the right (2, 4, 6, and 8) involve a phase change, 
with 6 and 8 being the cases of perfect and imperfect thermal 
contact mentioned above. The four problems on the left are 
the non-phase-change analogies to 2, 4, 6, and 8. The first 
four problems (1-4) concern a semi-infinite material in contact 
with a constant-temperature heat sink. The last four problems 
(5-8) involve contact between two semi-infinite media, labeled 
solid 1 and solid 2, where the temperature field in each 
material is influenced by the field in the other material. 
Resistance to heat transfer is present at x = 0 in Problems 3, 
4, 7, and 8. In particular, Problems 7 and 8 involve contact 
resistance at the interface of two different materials. 

In all eight problems, the thermal conductivity k, density p, 
specific heat c, and thermal diffusivity a = k/pc are assumed 
constant. The heat transfer coefficient h at x = 0 is also taken 
to be constant. In the phase-change problems, it is assumed 
that solidification takes place at a single temperature Tj, the 
fusion temperature. The latent heat of fusion L is liberated at 
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known as the Stefan number, is an important parameter in the 
phase-change problems. 

Most of the problems in Fig. 1 can be viewed as limiting 
cases of some of the other problems. For example, taking a — 
oo effectively eliminates the liberation of heat at the moving 
boundary X(t) and reduces each phase-change problem to the 
non-phase-change problem immediately to its left. Resistance 
to heat transfer at x = 0 is eliminated by taking h — oo, so that 
Problems 3, 4, 7, and 8 reduce to 1,2, 5, and 6, respectively, 
for large h. Taking k2 — °° in Problems 5, 6, 7, and 8 reduces 
them to 1, 2, 3, and 4, by making solid 2 act like an isothermal 
heat sink. These limiting cases can be used to check solutions 
to problems for which no other solution is available. 

Exact solutions to the non-phase-change problems in Fig. 1 
can be obtained by several methods, including the use of the 
Laplace transform (Carslaw and Jaeger, 1959; Ozisik, 1980). 
Among the phase-change problems, 4 has been solved by 
assuming a series form (Lozano and Reemsten, 1981; 
Westphal, 1967), and Problems 2 and 6 by assuming an error 
function form for the temperature distribution (Carslaw and 
Jaeger, 1959; Ozisik, 1980) or by similarity transform (Lunar-
dini, 1981). Ku and Chan (1984) have modified the Laplace 
transform method for use in phase-change problems and have 
applied it to five problems, including that of Neumann (a 
more general case of Problem 2 in which the liquid is initially 
superheated, so that the temperature profile in the liquid is 
also a function of position and time). Barry (1985) has used 
the Laplace transform method of Ku and Chan to solve 
Problem 6. In Problem 8, however, the presence of phase 
change, two media, and contact resistance makes solution by 
the methods mentioned above impossible. Alternative 
methods must therefore be used. 

Biot's Variational Principle Applied to Problem 8 

In a series of papers, Biot (1955, 1956, 1957, 1959) estab
lished a generalized theorem of minimum rate of entropy pro
duction and formulated a variational principle of irreversible 
thermodynamics similar to the Lagrangian equations of 
mechanics. This variational principle has been applied by Biot 
and others to problems in conduction heat transfer, including 
those involving temperature-dependent thermal properties and 
those in which melting or solidification occurs. For example, 
Biot and Daughaday (1962) have solved the case of ablation 
with a constant flux boundary condition and constant thermal 
properties, while Biot and Agrawal (1964) have treated the 
same problem assuming variable thermal properties. The case 
of melting due to constant flux without removal of melt has 
been considered by Prasad and Agrawal (1972). Lardner 
(1972) has solved the problem of melting with constant surface 
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Fig. 1 The eight problems illustrated 

0 < a; < X(() 

i t i ^ X(t) 

r2) at 3 = 0 

c = specific heat 
D = dissipation function 

heat flow vector 
heat flux 
heat transfer coefficient 

thermal conductivity 
latent heat of fusion 

Q = thermal driving force 
q = generalized coordinate; 

temperature at x = 0 
S = Xh/kx = dimensionless X 
T = T(x, t) = temperature 

t = time 
u = dimensionless T = (T 

- T2i)/(TU - T2i) 
V = thermal potential 
X = X(t) = position of moving 

boundary 
x = space variable 
a = thermal diffusivity 
(3 = dimensionless quantity = nK(S 

+ 1) - A 
A = dimensionless 5 = bh/kx 

5 = 5 (0 = penetration depth 

e 
00 
p 
a 

= temperature displacement 
= defined in equation (22) 
= density 
= Stefan number = 

- Tref)/L 

Subscripts 

1 
1/ 
2 

2/ 
/ 

= solid 1 
= solid 1 at t = 0 
= solid 2 
= solid 2 at t = 0 
= fusion 

c(7> 
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temperature as the boundary condition, and Agrawal (1975) 
has considered the case of melting due to "aerodynamic 
heating" (a convective boundary condition). These last two 
problems are virtually identical to Problems 2 and 4: The only 
difference between a melting problem and a solidification 
problem is the presence of a negative sign in the boundary con
dition at the phase front, equation (7). Further applications of 
Biot's principle to a vareity of heat transfer problems are men
tioned in review articles by Kumar (1972) and by Muehlbauer 
and Sunderland (1965). A more general description of Biot's 
method is given by Biot (1970) and Lardner (1963). 

Solution 

In Problem 8, liquid initially at the fusion temperature Tj is 
confined to the semi-infinite region x > 0. At time t = 0, the 
liquid is brought into imperfect thermal contact at x = 0 with 
a semi-infinite solid occupying x < 0 and initially at a 
temperature T2j < Tf. Solidification of the liquid begins at the 
surface x = 0, and the liquid-solid interface X(t) moves in 
the positive x direction. The constants kx, p , , c,, and a, are 
properties in the newly formed solid 1, while k2, p2,c2, and ct2 

are properties in solid 2 (see Fig. 1). 
The following partial differential equations (PDE's) and 

boundary conditions apply for t > 0: 

a2r, _ 
dx2 

d2T2 

dx2 

1 37, 

dt 

1 37, 

dt 

f o r 0 < x < J f 

f o r x < 0 

37, 
dx 

-h(Tx-T2) atx = 0,t>0 

(2) 

(3) 

(4) 

37\ 
~dx 

= k, 
dT2 

dx 

7, (x, t) = 7 

* i 
37, 

~dx 

f 

dX 

at x=0 

atx = X 

atx = X 

The equation 

dx 
-h(Tx-T2) a t x = 0, t>0 

(6) 

(7) 

(8) 

can be immediately obtained from equations (4) and (5), and 
any two of equations (4), (5), and (8) may be used as the 
boundary conditions at x = 0. The initial condition in solid 2 
is 

T2(x, 0 ) = 7 2 , f o r x < 0 (9) 

Problem 8 differs from Problems 2 and 4 in that the 
medium occupying the region x < 0 is no longer an isothermal 
heat sink. This means that Biot's variational principle must be 
applied simultaneously but separately to two solids—solid 1, 
which is the newly solidified material occupying 0 < x < X, 
and solid 2, which occupies x < 0. Also, the concept of a 
penetration depth (not needed in Problems 2 and 4) must now 
be introduced in this manner: We assume that the latent heat 
liberated at the moving boundary is transferred through solid 
1 and into solid 2 to a depth 8(t), the penetration depth. Since 
the initial temperature distribution in solid 2 is undisturbed 
beyond 5(t), and since no energy is transferred at or beyond 
5(t), the following two boundary conditions apply at x = 
Ht): 

T2(x,t) = T2i a tx = 5(f) 

dT2 

dx 

(10) 
= 0 atx = 5(t) 

The first step in applying Biot's method is to formulate the 
problem in terms of the displacements dt from the initial 
temperatures in the two regions. In solid 1, 

a2e, 1 30! 

~o~x~dt 
for 0<x<X(t) 

i(x,t)=0 atx=X(t) 

rlX 
atx = X(t) 

, 30, dX 
kx — - = Lp 1 dx dt 

Here 

,(*, t)mTi(x, t)-T, 

(11) 

(12) 

(13) 

(14) 

is the temperature displacement in solid 1. Similarly for solid 2 

d2e2 

dx2 
1 302 

«2 dt 

e2(x,t)--

302 

for 8(t)<x<0 

= 0 aix = S(t) 

at x = 8(t) 

(15) 

(16) 

(17) 
dx 

where 

62(x, t) = T2(x, t)-T2i (18) 

The discontinuity in temperature due to contact resistance 
at x = 0 is modeled by the convective boundary conditions 

^ i ^ i = "(?i-<72+0o) a t * = ° (19> 3A: 

30, 
k2—

± = h(gl-q2+d0) a t x = 0 
ox 

(5) which can be combined to give 

30! 

~dx 
_302_ 
dx 

at x = 0 

(20) 

(21) 

Here, 0O is the initial temperature difference across x = 0 at t 
= 0 

9o = Tf-T2i 

and g, and q2, defined as 

0 , ( 0 - 0 / ( 0 , 0 f o r / = l , 

(22) 

(23) 

represent the surface temperatures in each solid at the inter
face x = 0. Any two of equations (19), (20), and (21) may be 
used as the boundary conditions at x = 0. 

Temperature profiles consistent with boundary conditions 
(12), (16), and (17) and with the definitions of qx and q2 are 
assumed in each solid. Work done by Barry (1985) and by 
Hamm (1985) suggests that the temperature profile in the 
solidifying medium is approximately linear. For simplicity, a 
linear profile is assumed in solid 1 and an nth order 
polynomial in solid 2 

(-T) = 0 i U -

< = ?2 ( 1 0-f)' 

Q<x<X 

3<x<0 

(24) 

(25) 

Here, X(t) and 5 (0 constitute a proper set of generalized 
coordinates, and the temperatures q{ (t) and q2(t) are related 
to Jfand 5 through the convective boundary conditions at x = 
0. In equation (25), n must be taken greater than one in order 
to satisfy the zero-flux boundary condition [equation (17)]. 
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Biot's principle is applied separately to each solid. Let Hx 

and H2 represent the heat flow in solids 1 and 2, respectively. 
The energy equation V • H = - c6 for each solid can be writ
ten as 

dHi 

dx • = - C I 9 I ( 1 - Y ) ° * X S X 

dH2 

dx -c2<72 ('-TY b<x<0 

(26) 

(27) 

Integrating and using equations (13) and (17) to solve for the 
constants of integration leads to expressions for the heat flow 
in each solid 

1 / x\2 

Hl=—c,qlX[\~—j -pLX 

1 / x \ "+ 1 

H2 = c,o,5( 1 ) 2 n+\ 2 2 V 6 / 

(28) 

(29) 

The expressions for 0,- and for the heat flux H, are used to find 
the thermal potential Vh which is related to the thermal energy 
of the system, and the dissipation function Dh which is equal 
to the entropy production in the system 

- J 
Jo 

X(l) 1 
c,82dx = 

1 
xQ\X (30) 

(•Jf(') 1 X r / 2 3 

- — c^Lilq^X1 + q^XX) + fHX1 

V, 
Jo 2 2/J+1 

(31) 

(32) 

M 5(0 1 

o 2fc, 
Hldx = 

1 „2 C2 

2 k2 («+l)2(2n + 3) 

(^29| 2 ^ t + 365<?2g2 + 52g2) (33) 

The thermal driving forces corresponding to the generalized 
coordinate X in solid 1 and 5 in solid 2 are 

Qx=^cxq\-pLqx (34) 

Qt n + 1 

Biot's variational principle is written in each solid as 

dV, dD, 

dX dX 

dV0 dD, 

dS dd 

= Qx 

• = a 

(36) 

(37) 

Defining the dimensionless quantities A = 8h/kl, S = Xh/k{, 
K = k2/ku$ = nK(S + 1) - A, and a = cfl^/pL (the Stefan 
number) and using equations (20) and (21) to obtain 

Qi = (38) 

Qi- (39) 

equations (36) and (37) can be rewritten in terms of the dimen
sionless generalized coordinates A and S and their dimen
sionless time derivatives 

dS 
pi+-rPi dA dr 2 

dr 

Pi = - oPnK( onKS + $\ 

P2 = P3+onKs\(nK-A) (—- /3 + -^ - onKS) 
L V 6 40 / 

+ |3 (—jS + .A.ffntfs)] 

P3=- onKS2 (— P + -^~ onKS\ (40) 

and 

P4+—Ps 
dA dr 

dr 

« 2 (K+l)(2« + 3)(3n+l) 

Ps = 3nKA1(2n+l) 

P6 = A[2P(5n + 3) + 3nK(S+ l)(2n + 1)] (41) 

Here T = th2/klcx is dimensionless time, and all six Pt are 
functions of S, A, and the properties involved. 

Thus, the use of Biot's principle has reduced the original 
PDE's for this problem to two coupled ordinary differential 
equations (ODE's), equations (40) and (41). These are the 
equations which must be solved simultaneously to obtain X(t) 
and 8(t). In applying Biot's principle to Problems 2 and 4, on
ly one ODE had to be solved, and in each case, it was simple 
enough to be solved analytically. However, the complexity of 
the expressions above makes the possibility of an analytical 
solution very unlikely for this problem. Therefore, a standard 
algorithm (IMSL, 1984) was used to obtain a numerical solu
tion to equations (40) and (41). These results are presented in 
the following section. 

(35) Results 

The position of the moving boundary S(T) and the penetra
tion depth A (T) are displayed graphically as functions of time 
in Figs. 2 and 3, respectively, for both bismuth (K = 2.4, a = 
0.55, a , /a 2 = 1.457) and aluminum (K = 0.1, a = 2.5, a , /a 2 

= 20) solidifying on stainless steel 304. The relationships 
shown there are nearly linear for large values of dimensionless 
time. In Fig. 4, the ratio IA(T) I / S ( T ) I appears to flatten out 
almost asymptotically as T increases. The temperature profiles 
in the two solids for the case of bismuth on stainless steel are 
displayed in Fig. 5. 

As mentioned earlier, the solution can be checked by con
sidering limiting cases. In particular, the thermal conductivity 
in the nonsolidifying medium k2 was taken to be large for 
Problem 8. In Table 1, the resulting position of the moving 
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Table 1 Verification of collapse of Problem 8 to Problem 4 for large k2; 
a = 0.5 

dimensionless time r 
Fig. 2 Dimensionless position of moving boundary as a function of 
dimensionless time T for bismuth/aluminum on stainless steel, n = 2 

2 .0 3 .0 

dimensionless time r 
Fig. 3 Dimensionless penetration depth A as a function of dimen
sionless time T for bismuth/aluminum on stainless steel, n = 2 

0.0 1.0 2 .0 3.0 -1.0 

dimensionless time r 

Fig. 4 Ratio I A(r)l/S(V)l as a function of dimensionless time r for 
bismuth/aluminum on stainless steel, n = 2 

" 2 

/ 

"T 8 ^-

Ui 

-7 .0 - 6 . 0 -5 .0 - 4 . 0 - 3 . 0 -2.0 -1 .0 0.0 1.0 

position z = xh/ki 

Fig. 5 Temperature as a function of position for various times (all 
quantities dimensionless) for bismuth/aluminum on stainless steel, n = 
2 

boundary is compared for various times with the position ob
tained in Problem 4 using Biot's method (Barry, 1985). As was 
expected, the values are in close agreement, particularly for 
large times. This confirms that Problem 8 reduces to Problem 
4 as k2 — °°. 

The solution to Problem 8 was further checked by compar
ing it with the results of Hamm (1985), who has solved the 

dimensionless 
time 

0.5063 
1.0539 
1.3642 
2.4398 
3.2768 
4.2091 
4.7110 
5.7860 
7.5762 
8.8879 

dimensionless position of 
moving boundary — Biot's method 

Problem 4 
0.20 
0.40 
0.50 
0.80 
1.00 
1.20 
1.30 
1.50 
1.80 
2.00 

Problem 8: AJJ large, n=2 
0.22 
0.41 
0.51 
0.81 
1.01 
1.20 
1.30 
1.50 
1.80 
2.00 

Table 2 Comparison of dimensionless position of moving boundary for 
bismuth solidifying on stainless steel 304: K = 2.4, a = 0.55, a-\la2 = 
1.457 

dimensionless 
time 

0.2258 
0.4941 
0.8052 
1.1569 
1.5484 
1.9790 
2.4482 
2.9558 
3.5017 
4.0855 

Biot's metho< 
n=1.5 
0.10 
0.20 
0.30 
0.39 
0.49 
0.59 
0.69 
0.78 
0.88 
0.98 

n=2 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

n=3 
0.10 
0.21 
0.31 
0.41 
0.51 
0.62 
0.72 
0.82 
0.93 
1.03 

n=10 
0.10 
0.21 
0.31 
0.42 
0.52 
0.63 
0.74 
0.85 
0.95 
1.06 

Hamm's numerical 
solution 

0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

original PDE's numerically using an implicit scheme and has 
obtained experimental results for the case of bismuth solidify
ing on stainless steel 304. A comparison of his numerical solu
tion and the solution given here using Biot's principle appears 
in Table 2. The values for the dimensionless position of the 
moving boundary are in good agreement for all the assumed 
profiles in the table, with n = 2 giving a match to the nearest 
0.01 for all values of dimensionless time listed. The 
temperature profiles shown in Fig. 5 also closely resemble 
those obtained by Hamm. 

Conclusions 

We have presented the solution to a phase-change problem 
involving contact resistance. Using Biot's variational princi
ple, we were able to reduce the problem to a pair of coupled 
ODE's, which are easier to solve numerically than are the 
original PDE's. It should be noted however that Biot's princi
ple (like Goodman's heat balance method) is essentially an in
tegral technique, since the conduction equation is satisfied on 
average over a body rather than at each point in the body. 
Thus, the most appropriate use for Biot's variational principle 
is in obtaining generalized coordinates (e.g., surface 
temperature, position of moving boundary) as functions of 
time, as we have done here. 
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Optimal Positioning of Tubes in 
Arbitrary Two-Dimensional Regions 
Using a Special Boundary Integral 
Method 
Two-dimensional steady conduction heat transfer from a set of parallel tubes 
located in a finite two-dimensional region enclosed by an arbitrarily shaped bound
ary is considered. A special boundary integral method is used in an optimization 
scheme where the tube sizes, positions, and surface temperatures can be determined 
in an iterative procedure with the objective of minimizing the variation of 
temperature over a specified segment of the boundary. Previous studies of this type 
were limited not only to rectangular regions but also to uniform heat flux results on 
the surface of each tube. However, the optimization scheme developed in this study 
is applicable to any arbitrarily shaped two-dimensional region and considers angular 
variation of heat flux on the surface of each tube. Results for three sample 
geometries are presented and discussed. 

Introduction 
In many conduction heat transfer problems, the behavior of 

the temperature or its normal derivative is of interest only on 
the boundary of the domain under consideration. In this type 
of problem it is often advantageous to use the boundary in
tegral equation (BIE) method in which the problem can be for
mulated in terms of the unknowns on the boundary of the do
main. The major advantage of this formulation is that only 
the boundary of the region of interest needs to be discretized. 
Therefore the BIE method involves a significantly smaller 
number of unknowns in this type of problem relative to such 
methods as finite difference or finite element, where the entire 
domain of interest must be discretized. A considerable amount 
of research using the BIE method has been reported in a varie
ty of areas such as conduction heat transfer, potential flow, 
elastic torsion, and fracture mechanics. Problems governed by 
the Laplace equation have been successfully solved using the 
BIE method (Jaswon and Symm, 1977). Rizzo and Shippy 
(1977) and Fairweather et al. (1979) used the BIE method for 
the analysis of three-dimensional thermoelasticity and two-
dimensional potential problems. Khader and Hanna (1981) 
presented a boundary integral iterative numerical solution for 
general steady heat conduction problems with a variety of dif
ferent boundary conditions. 

There are a variety of important problems where the solu
tion of the Laplace equation in regions wth circular interior 
boundaries may be required. Some examples are two-
dimensional conduction heat transfer through dies or molds in 
casting processes where cooling or heating lines are positioned 
in the mold to achieve the desired temperature distribution on 
the cavity surface. Other examples may include heat conduc
tion in cooled gas turbine blades, flow of an incompressible in-
viscid fluid around circular cylinders, and buried heat-
exchanger tubes of ground-coupled heat-pump systems. 

In the application of numerical methods to steady-state con
duction heat transfer problems, including the BIE method, the 
discretization of the boundaries internal to the region of in
terest may pose special problems. Specifically, when these in
ternal boundaries are small relative to the outer boundary 
(e. g., small holes), a fine discretization needs to be im-

Contributed by the Heat Transfer Division and presented at the National 
Heat Transfer Conference, Denver, Colorado, August 4-7, 1985. Manuscript 
received by the Heat Transfer Division October 23, 1985. 

plemented on the entire inner boundary to avoid numerical 
conditioning problems. Barone and Caulk (1981) developed a 
formulation in which the integrals around the circular interior 
boundaries were evaluated analytically using harmonic series 
expansions for boundary values of the dependent variable and 
its normal derivative, and by a clever choice of kernel func
tions. Arimilli and Parang (1983) and Arimilli et al. (1984) 
used this formulation to determine the conduction heat 
transfer from circular tubes embedded in semi-infinite 
medium with convective boundary conditions. Barone and 
Caulk (1981) applied their formulation, using only the con
stant term of the harmonic expansion for heat flux (called 
zeroth-order approximation), to the problem of a two-
dimensional (2D) rectangular die with interior coolant lines. 
They applied the solution procedure developed to solve an op
timization problem (Barone and Caulk, 1982). 

The focus of the present study is the problem of optimal 
thermal design of two-dimensional molds with circular 
coolant lines. Here, the mold is modeled by a 2D arbitrary 
region with internal circular holes. The objective of an op
timization process in a mold design could, as an example, be 
to minimize the variation of temperature over a segment of the 
mold (cavity) wall. The optimization parameters could be 
selected to include the locations, the number, and/or the sizes 
of the coolant lines (holes). This problem is solved by the use 
of the BIE method as modified by the special integral formula
tion proposed in Barone and Caulk (1981). More specifically, 
the present study allows the region which models the mold to 
be a specified but arbitrarily shaped region and, more impor
tantly, considers the inclusion of higher order terms in the har
monic series expansions that were discussed earlier. This latter 
aspect of the solution makes it possible to determine the varia
tion of normal heat flux (or temperature) on the boundaries of 
the coolant lines (holes). 

Therefore, in the following section the analytical formula
tion leading to a particular numerical code, which has been 
developed based on the above special integral method, is 
discussed briefly. This code generates solutions of temperature 
and normal heat flux on the boundaries of any arbitrary 2D 
regions. It solves for the coefficients up to and including the 
first-order terms in the harmonic expansion of the heat 
transfer from circular holes. This code is then used in an op
timization problem to determine the optimal locations and the 
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CIRCULAR HOLES (3C) 
SPECIFIED BOUNDARY 
SEGMENT 

2D REGION R 

Fig. 1 The two-dimensional region with circular tubes 

heat flux on the surface of the coolant lines in the 2D mold. 
This discussion is included in the section on optimization. 
Several configurations are used as illustrative examples and 
the results are presented and discussed in detail. 

Analysis 

Consider a two-dimensional region R as shown in Fig. 1 
containing M circular holes, representing a cross section of 
tubes normal to the region. Assume the a t h hole is centered at 
r ° ( £ a , r;a) with radius aa. The temperature 4> in this region is 
governed by the Laplace equation. If the values of 
temperature or its normal derivative are only of interest on the 
boundaries of region R, an alternative integral method can be 
employed based on Green's identity (McMillan, 1930) 

dg d<j> 
-g-**<»+L(*- dn dn 

)ds 

M 

s L (*• dn 

3 0 " •> 

dn / 
ds = 0 (1) 

where 

and 

1 when yiR 

1/2 when .ye (di?, dca) 

0 when yt{R, dR, dca] 

g(x,y) = -^-log\X-Y\ (2) 

Equation (1) represents the value of ^ at a point y on the 
boundary in terms of integrals of </> and its normal derivative 
over all boundaries of the domain. The solution for 
temperature or its normal derivative on the boundary of 

region R is obtained by evaluation of this integral over discrete 
intervals on this boundary. 

The temperature and its normal derivative on the surface of 
circular tubes (dca) can be expressed in a harmonic series 

4 a = <t>$ + i (K sin m6a+4>%m cos md' 
) 

j L = q° = q« + £ ^ ? m s i n md° + q%m cos mfl») 

(3) 

(4) 

where the coefficients of the above series can be obtained by 
employing the following special kernel functions: 

g$(x)=g(X,r") (5a) 

cos mda 

Sln= , v „ „ , „ (56) \X-Ta\' 

sin mda 

\X~Ta\" 
(5c) 

After equations (3)-(5) are substituted into equation (1), the 
integrals can be evaluated analytically over the circular holes, 
thus avoiding entirely the discretization of these boundaries 
(Barone and Caulk, 1981). 

In this analysis we assume, following Barone and Caulk 
(1982), constant-temperature tube surfaces 

0 ° = 0 S (6) 
For the harmonic expansion of heat transfer, the analysis was 
not limited to the inclusion of the zeroth-order term (m = 0) 
as in the previous reference. Instead the next higher order 
terms (m = 1) were also included 

(f = <7o + <7? sin da + ql cos 6a (7) 
There are two reasons for including these higher order 

terms. First, the accuracy of the results can be significantly im
proved as illustrated in Barone and Caulk (1981). For the 
specific example used in that reference, the results for m = 0 
were found less accurate by as much as 20 percent when com
pared t o w = 1. The second, and more important, reason for 
including the higher order terms is that without them no infor
mation can be obtained on the angular variation of the normal 
heat flux on the surfaces of the coolant lines. Therefore such 
thermal properties of interest as estimates of maximum or 
minimum heat flux and their location on the tube walls can 
not be made without setting m equal to 1 or larger. 

When equations (7) and (2) are substituted into equation 
(1), the integrals over each of the interior circular boundaries 
can be analytically evaluated. With the external boundary 
discretized into Nsegments, the first integral can be written as 

aa --
dc --
g '-

M --
m -

n -

P --

= radius of tube a 
= hole boundary 
= harmonic function in 

Green's identity 
= number of holes 
= the order of the terms 

in harmonic expan
sions, equations (3) and 
(4) 

= unit normal vector at 
boundary 

= heat of reaction 

Q 

9S, 9f, Qi 
R, dR 

ds 

X, Y 

a 

= normal derivative of 
temperature, see equa
tion (4) 

= defined in equation (7) 
= region R and its 

boundary 
= differential length on a 

boundary 
= position vectors of 

points on the boundary 
= tube identification 

number 

0 

pa 

6a 

X 

4> 
<£§ 

* 

= tube identification 
number in equation (11) 

= position vector of 
center of tube a 

= azimuthal angle of tube 
a 

= defined after equation 
(1) 

= temperature 
= constant temperature 

on the surface of holes 
= nondimensional 

temperature 
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Af discrete integrals. The resultant discrete integrals over each 
segment can be evaluated analytically for segments on straight 
sections of the boundary, and numerically (using, for exam
ple, the trapezoid rule) for those on curved boundaries. Thus 
TV algebraic equations can be generated corresponding to the N 
segments of the external boundary. Substitution of equations 
(7) and (5a), (7) and (5b), and (7) and (5c) into equation (1) 
yields three integral equations. The integrals can be evaluated 
in a manner similar to the one described above. For Mcircular 
interior boundaries, this procedure leads to 3M algebraic 
equations. The basic problem underlying the optimization 
problem is thus reduced to a set of (TV + 3M) linear algebraic 
equations involving N unknown temperatures of the discrete 
segments of the boundary (cj>1, </>2, $3 4>N) and the three 
unknown coefficients of the harmonic expansion for the nor
mal temperature gradient for each tube 

q%,qf,andg%; a = l , 2 M 

A computer code is developed to generate and solve the resul
tant set of equations. The code yields a boundary integral 
solution (BISOL) and is developed and presented in Ketkar 
(1985). This code is applied to four different 2D geometric 
configurations and some of the results are presented in Parang 
et al. (1985). 

In the present paper we use BISOL to solve the optimization 
problem of determining the positions of a given number of 
tubes within a 2D mold with an arbitrarily shaped mold cavity 
surface with the objective that the temperature variation over 
the cavity surface be minimum. The problem involves steady-
state conduction heat transfer from a finite body having, as its 
external boundaries, three normal plane surfaces and an ar
bitrarily shaped fourth surface. The interior of the body con
tains a specified number of circular boundaries maintained at 
a prescribed constant temperature. At each of the external 
boundaries either the temperature or a convective boundary 
condition may be specified. Three illustrative problems are 
solved and the results are presented and discussed. 

Optimization 

One of the objectives in the thermal design of molds or dies 
may be to achieve, as much as possible, a uniform temperature 
on the mold cavity surface. This objective can be achieved by 
optimization of several parameters that affect the cavity sur
face temperature. These parameters may include geometric 
contour of the external boundary, convective conditions on 
the external boundary, radius and surface temperature of the 
tubes, and location of the tubes. In this study we assume that 
the external boundary of the heat conductor is given and not 
subject to optimization. Although different sets of convective 
boundary conditions are considered in this study, they are also 
assumed known and not subject to parametric optimization. 
Assuming a given number of tubes, the design objective in this 
study is therefore selected to be the determination of optimal 
tube locations in the heat conductor (mold). Without a loss of 
generality in the application of the method, we assume the 
radii and surface temperatures of the tubes as given and select 
the tube locations as optimization parameters. Thus we con
sider two design variables for each tube, i.e., the coordinates 
of the center of the hole, £ and -q. 

The objective of the optimization scheme is to minimize the 
distributed difference between the nodal temperature $, and 
the desired temperature $ c over some portion of the outer 
boundary (the cavity surface). This distributed difference is 
expressed here, as in Barone and Caulk (1982), in the form of 
a least-square difference of the form 

where $, is the nondimensional temperature given by 

and <t>„ is the ambient temperature outside the heat conductor. 
The normal derivative of temperature qt can be formulated in 
terms of temperature $y at the boundaries. That is, the general 
boundary condition on dR can be expressed as 

4j-
3*1 
dn 

-B&j+P (9) 

Here Bi is the Biot number and P is the heat of reaction ab
sorbed by the heat conductor expressed as a uniform heat flux 
across the cavity surface. 

The constraints on this optimization problem are: specified 
lower limits for the spacing between the tubes, and the spacing 
between each circular tube and the outer boundary. These 
constraints are expressed in the following explicit form: 

Yi-r
a\>ac' + cl; a = l , 2 , . . . ,M, i=l,2, . . . ,N 

(10) 

| r a - r " >aa + afl + c2; a, (3=1,2, . . . ,M (11) 

where cl and c2 are specified clearances and taken to be 0.05 in 
this study. 

The nodal nondimensional temperatures $,, which are 
represented in the objective function (8), depend on the loca
tion radii and the temperature of the tubes through the solu
tion of the set of (iV + 3M) linear algebraic equations. Hence 

* ; = *,-(ra , a", </>g); a = l , 2 , . . . , M (12) 

OBJ= £ (*,-l)2 (8) 
y, tbR 

The optimization problem formulated above must be solved 
numerically. This objective is achieved with the use of the code 
CONMIN (Vanderplaats, 1973). CONMIN is a FORTRAN 
program in subroutine form for the minimization of a 
multivariable function subject to a set of inequality con
straints. The main algorithm used in CONMIN is the method 
of feasible directions (Zoutendijk, 1960). The computer pro
gram BISOL developed and discussed earlier is used in con
junction with CONMIN for the determination of the optimal 
locations of cooling or heating lines in two-dimensional 
molds. 

In order to illustrate the method and use the optimization 
scheme developed, several two-dimensional configurations are 
selected to represent different mold cross sections. The con
vective boundary conditions on the external boundary of the 
region are assumed known and Biot numbers specified. For il
lustration purposes the nondimensional temperature on the 
surface of all tubes are assumed to be constant and arbitrarily 
set to 1.24. Also all tube radii are assumed equal and have a 
dimensionless value of 1 for the cases considered here. It is im
portant to note that the method and the code developed here 
are quite general and the tube radii and surface temperatures 
can also be subjected to the optimization scheme. 

Initially the coordinates of the location of the tubes are 
assumed and BISOL and CONMIN are used in an iterative 
routine to establish the optimal locations of the tubes. The in
itial position of the tubes is found to affect the required op
timization time. The significance of the initial guess for the 
tube locations on the computation time increases, not unex
pectedly, with increase in the number of tubes in the two-
dimensional region. 

Results 

The optimization scheme developed here is illustrated by ap
plying it to a selected number of 2D configurations represent
ing mold cross sections each with several coolant lines passing 
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0 „ 0 
(20.5,7 1) 

Fig. 2 Sketch of the two-dimensional rectangular region with circular 
holes and convective boundary conditions used in case I 

On External Boundaries 

<(,„ = 1.24 

L/a = 25.0 

Bi = 0.2 

P = 0.0 

H/a = 15.0 

Fig. 3 Variation of the nondimensional temperature 4> along the cavity 
surface: case I; optimal two hole locations: (7.2, 7.5), (18.5, 7.5); optimal 
three hole locations: (12.2, 6.8), (20.5, 7.1), (4.7, 7.7) 

External Boundaries Except CD B! = 0.2 
on CD Bi = 0.8 

4.0 = 1.24 P = 0.5 

L/a = 10.0 H/a = 15.0 

Fig. 4 Variation of the nondimensional temperature 0 along the cavity 
surface: Case I; optimal two hole locations: (7.3, 7.7), (18.3, 7.7) 

through them. Thus three different geometries are selected 
and are labeled Cases I, II, and III. The configurations are 
shown in Figs. 2, 5, and 7. In all cases tube sizes are assumed 
to be the same, aa - 1.0, and all tube surface temperatures 
are selected at $f = 1.24. In all configurations the objective 
function defined by equation (8) is minimized over the mold 
cavity surface shown as the boundary segment between points 
C and D. These points are each assumed to be one tube 
diameter away horizontally from the vertical ends of the mold. 
In Figs. 2, 5, and 7 the initial guess for the center of each hole 
in the optimization process is shown by a circled /. The pro
gression of the design is then described by indicating the loca
tion of the hole centers after the designated (circled) number 
of iterations. The optimal coordinates of the hole centers, (£, 
?j), are also shown for each configuration. 

Case I corresponds to the rectangular region shown in Fig 2. 
Assuming two and three heating lines, respectively, and 

Fig. 5 Sketch of the two-dimensional region with circular holes and 
convective boundary conditions used in case II 

uniform Bi = 0.2 on all external boundaries, P = 0.0, L/a = 
25.0, and H/a = 10.0, optimal tube locations are calculated. 
The results of the cavity surface temperature and coordinates 
of tube locations are shown in Fig. 3. As expected, optimal 
tube locations and corresponding cavity temperature distribu
tion are symmetric and temperature fluctuations are smaller 
for the three-hole problem. In this and other symmetric ex
amples presented, a slight asymmetry may exist in the final op
timal locations of the holes. This phenomenon is due to the 
manner in which the iteration process is carried out in CON-
MIN. That is, if in three consecutive iterations the change in 
the objective function is calculated and found to be less than a 
small specified limit (DELFUN), the process is terminated 
(Vanderplaats, 1973). In the examples used in this study, 
DELFUN is set equal to 0.001. Reducing this value will 
diminish the asymmetry in the final solution. However, the 
obvious disadvantage in reducing DELFUN is the increase in 
the required number of iterations needed to solve for the op
timal hole locations. 

Next the effect of a nonuniform convective condition on the 
optimal location of the tubes was considered. Assuming a dif
ferent and nonuniform Biot number and P = 0.5, the results 
of the temperature distribution on the cavity surface and the 
optimal tube locations are given in Fig. 4. From Figs. 3 and 4 
and other cases presented elsewhere (Ketkar, 1985), it is 
observed that the optimal tube locations are not significantly 
influenced by the changes introduced in the convective bound
ary conditions (i.e., for a range of Bi = 0.2 to 1.0; and a range 
of P = 0.0 to 0.5). 

Case II corresponds to the configuration shown in Fig. 5. 
Here the cavity surface is assumed to be part of a semicircle. 
This geometry was used with both two and three tubes in the 
optimization problem and the temperature on the external 
boundary as well as the optimal locations of tubes in each case 
were determined. The results for temperature distribution on 
the cavity surface are shown in Fig. 6. The coordinates of the 
computed optimal tube locations are also given in Fig. 6. As in 
the rectangular region, the temperature distribution on the 
cavity surface has smaller fluctuations and is more uniform 
for the three-tube problem as compared to the two-tube 
problem. 

Case III corresponds to the configuration shown in Fig. 7 
where the semicircular cavity surface of the previous problem 
is replaced with an S-shaped contour. The progression of the 
iteration process for the two-hole system is also shown in this 
figure. The final results for the temperature and optimal hole 
locations for the three-hole system are presented in Fig. 8. 
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On External Boundaries 

*o = ' • " 
L/a = 25.0 

Three Holes 

Bi = 0.2 

P = 0.0 

H/a = 15.0 

Two Holes 

Fig. 6 Variation of the nondimensional temperature 0 along the cavity 
surface: Case II; optimal two hole locations: (8.2, 19.5), (17.6, 18.9); op
timal three hole locations: (6.2, 18.0), (12.8, 20.4), (19.2, 17.7) 

Fig. 7 Sketch of the two-dimensional region with circular holes and 
convective boundary conditions used in case III 

On Externa] Boundaries 

• 0 = 1.24 

L/a = 25.0 

Bi = 0.2 

P = 0.0 

H/a = 15.0 

Fig. 8 Variation of the nondimensional temperature <t> along the cavity 
surface: Case III; optimal two hole locations: (6.6, 5.5), (19.0, 19.1); op
timal three hole locations: (6.3, 5.1), (15.3, 14.9), (19.0, 19.0) 

The examples discussed above are illustrations of applica
tion of the general computer program developed for this 
study. As mentioned earlier, in this computer program, the 

tube size, convective boundary conditions, boundary of the 
region of interest, temperature imposed on circular holes, and 
the number of holes can all of course be conveniently varied 
for other two-dimensional applications. 

The CPU time in the above numerical examples depended 
upon the number of tubes, initial tube locations, and the value 
of DELFUN used in the optimization scheme. The typical 
range of the computation time in the above illustrations is ap
proximately 1 to 5 min on a DECsystem-10 Model 1090. 

Conclusions 

The computer program BISOL developed based on a special 
boundary integral method is used in an optimization scheme 
to determine the optimal locations of coolant lines in a two-
dimensional mold. The method used and the optimization 
program developed are very general, and can be used to obtain 
quantitative results for any arbitrary two-dimensional region. 
In addition, the inclusion of higher-order terms in the har
monic expansions of heat flux in this numerical scheme makes 
it possible to consider angular variation of heat flux on the 
surface of each tube. Results for three sample geometries were 
presented and discussed. The maximum computational time 
required for the illustrative examples discussed was found to 
be less than 5 min. 
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Inversion Method for Determining 
Effective Thermal Conductivities of 
Porous Materials 
An inversion method for determining the effective thermal conductivies of porous 
materials from observed mean effective thermal conductivities is presented. Its 
validity is confirmed by numerical simulations. The effective thermal conductivities 
of glass beads are determined by the proposed method successfully used to predict 
the temperature profiles within the glass beads. 

Introduction 

The guarded hot-plate method has been widely used in 
determining the effective thermal conductivities of porous 
materials. This method yields mean effective thermal conduc
tivities defined by equation (1) alone 

\ = qy0/(TH-TL). (1) 

Here, X is the mean effective thermal conductivity, q is the 
heat flux across the porous material, y0 is the thickness of the 
porous material, and TH and TL are the temperatures of hot 
and cold boundaries, respectively. 

The mean effective thermal conductivity thus obtained can 
be used effectively for gross evaluation of heat transfer by 
conduction and radiation. However, based on the energy 
equation, an exact prediction of coupled conduction and 
radiation heat transfer in a thick porous medium calls for 
knowledge of its effective thermal conductivities. This in
cludes the contribution of radiative heat transfer. Therefore it 
is necessary to determine effective thermal conductivity from 
information on mean effective thermal conductvities obtained 
experimentally. Two kinds of effective thermal conductivities 
are related by 

•»H r 
'^eL,e„)= "M6)deneH-eL), 

(2) 

where A(0) denotes the effective thermal conductivity at 
temperature 61,6*= 771000, 6H = 7^/1000, and 6L = 
rL/1000. Based on this relation, it may be possible to estimate 
\(6) from the data of \(8L, 6H), which freqeuntly entails er
ror in the course of meaurement. However, to the authors' 
knowledge, no effective solution to this problem has yet been 
reported. 

In the present study, an analytical method based on 
minimum AIC (Akaike's information criterion) estimation [1] 
for determining effective thermal conductivities of porous 
materials is presented, and is applied to some typical cases to 
confirm validity. Furthermore, the effective thermal conduc
tivities of glass beads are determined. 

Analytical Method 

We suppose that A(0) is a continuous function of 6 in the 
temperature zone of interest and that \(d) can be expanded as 
a polynomial of 6 

M0)=I>„0", (3) 

where N denotes the order of a polynomial and should be an 
integer less than about 6 so as to suppress undesirable oscilla-
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tion induced by higher-order polynomials. Substitution of 
equation (3) into equation (2) yields 

\(dL,dH)=a0 + 
n + l 

(4) 

The problem to be solved is converted to determine a„ (n = 
0 to N) by utilizing observed values of \(6L, 6H). The number 
of data for \(QL, 8H) must be equal to or greater than N. 
Since X(0L, 6H) may contain some experimental error, the in
troduction of the least-squares method seems to be natural. 
Using to this method, we obtain a set of equations for a„ for n 
= OtoN 

ek„r -oir 
yfi (k+Ww-6Lj) 

{M0L» 'Hj> 

„ = i n-t-1 ; = 1 

= 0, (5) 

where Mis the number of data on mean effective thermal con
ductivities and k = 0, 1, 2, . . . , N. Equation (5) constitutes a 
set of simultaneous linear equations with degree (N+ 1) and 
can be solved readily by a Gaussian eliminations method. It 
should be noted that the determination of the optimum value 
of Nbecomes crucial. In the present study, the optimum value 
of Nis determined in order to achieve the minimum AIC [1]. 

The AIC is defined by 

AIC = Mln(5)+2(yV+l) , (6) 

where 5 is the sum of squares of residuals, and is given by 

M , „eHJ x 2 

«= £ (M^. eHJ)-\ Me)de/(eHj-eLi)) 

M 

= Efe.y- „ = i n + l f~y 
al-lan + l-i (7) 

The minimum AIC estimation is thought to be a formulation 
of the principle of parsimony in model building. It works as 
follows: When 5 is identical for two polynomial expansions of 
\(d) having different values of JV, the polynomial expansion 
with the smaller number of parameters is selected. This is 
because it gives a smaller value of AIC. Here, equation (5) was 
solved by varying the value of N from 1 to 6, while 
simultaneously the value of AIC was evaluated from equation 
(6). The order of N for the minimum AIC was then picked up 
as the optimum order of Af and the corresponding polynomial 
of A(0) was assumed to be the best one. 

Numerical Simulations 

Several synthetic cases were analyzed to test the proposed 
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Table 1 Some characteristic values of the glass beads used in the 
experiment 

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 

9 H 

Fig. 1 Results of numerical simulations on inversion performed for 
some typical cases 

method. The following expressions for X(0) were adopted to 
generate original data on mean effective thermal 
conductivities: 

Casel: X(0) = -0.001359 + 0.1234(9 (8) 

Case2: X(0) = 0.1747-0.0229f? + 0.17816»2 (9) 

Case3: X(0)= -0.0678+ 1.21940- 1.6OO802 + 1.365403 (10 

Case4: X(0) =21.0014-40.70870+ 29.72O802-6.855803 (11) 

These represent typical cases of variation in effective thermal 
conductivities. Cases 1,2,3 are models for increasing effective 
thermal conductivities against increasing temperature, 
whereas Case 4 is a model for decreasing effective thermal 
conductivities against increasing temperature. 

Based on these expressions, the values of \(6Lj, &HJ) in 
equation (5) were first computed by utilizing equation (2) 
together with equations (8)-(ll), where we tentatively as
sumed that 8Hj is given by 

eHj = eLj + 0.025j (12) 

fory = 1 to 36 and that 9Lj = 0.3. Subsequently, 5 percent ran
dom error was introduced to these data so as to simulate ac
tual measurement. The 5 percent random error is thought to 

Mean radius 
( m ) 

Number 
density 

( b e a d s / m 3 ) 

Porosity 

Chemical 
composition 
( w t . % ) 

4 . 9 5 X 1 0 ~ A 

1.01*109 

0.409 

Si02 72 
AI2O3 1 
N a 2 0 | K 

K20 J ' 
MgO 4 

CaO 8 
others 1 

be corresponding to the lower limit of accuracy of mean effec
tive thermal conductivities obtained by the guarded hot-plate 
method. 

As a result of inversion, the following polynomials were 
obtained: 

Casel: X*(0) =-0.0019085 + 0.12370 (13) 

Case2: X*(0) =O.1588 + O.O27620 + O.139402 (14) 

Case 3: \*(6) = -0.09371 + 1.31740- 1.7O6202 + 1.39O303 

(15) 

Case 4: X*(0) = 18.7534-30.27680+14.58502 (16) 

Mean effective thermal conductivities computed from the 
recovered effective thermal conductivities X* (0) are shown in 
Fig. 1. There is excellent agreement between the recovered 
results and the input data, meaning that the proposed method 
works very well. 

Determination of Effective Thermal Conductivities of 
Glass Beads 

Experimental Methods. The present inversion method was 
applied for estimating the effective thermal conductivities of 
glass beads. The mean radius of beads, number density, 
porosity of a layer of glass beads, and chemical composition 

AIC 

a„ 

i,j 
k 

M 
N 
n 
Q 
T 

Nomenclature 

= Akaike's information 
criterion 

= coefficient of a series ex
pansion, equation (3) 

= summation indices 
= index 
= number of data 
= order of a polynomial 
= variable 
= heat flux, W/m2 

= temperature, K 

TH 

TL 

y 

ya 

5 

e 
0H 

= hot boundary temperature 
of a porous material, K 

= cold boundary temperature 
of a porous material, K 

= distance from the hot 
boundary, m 

= thickness of a porous 
material, m 

= sum of squares of residuals 
= 771000 
= 7V1000 

h 
om X(0) 

X 
X*(0) 

XG(0) 

rL/iooo 
(8H + 0 J / 2 
effective thermal conduc
tivity at 0, W/mK 
mean effective thermal 
conductivity, W/mK 
recovered effective thermal 
conductivity, W/mK 
effective thermal conduc
tivity of glass beads, 
W/mK 
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are shown in Table 1. Mean effective thermal conductivities 
were measured in air at 0.1 MPa by a parallel-plate-type ap
paratus. A schematic diagram of the experimental apparatus is 
shown in Fig. 2. The hot end unit, made of 0.5-cm-thick 
SUS316 platings, is divided into three parts: (a) the main hot 
plate, measuring 17 x 17 cm2, (b) a bordering frame plate 6.2 
cm wide around the main plate (a), and (c) a backing hot plate 
30 x 30 cm2 arranged behind and parallel to (a) and (b). Parts 
(b) and (c) constitute compensating heaters for the purpose of 
realizing one-dimensional heat flow through the test section 
from hot toward cold boundaries. The heating element (not 
shown in the drawing) was insulated kanthal wire, 0.14 cm in 
diameter, laid on parts (a), (b), and (c) to form three indepen
dent circuits. Each circuit was controlled manually to main
tain the temperature of the hot end unit at the desired 
temperature in the range of 320 K to 680 K for each run. The 
temperature difference within the three parts (a), (b), and (c) 
of the hot end unit was regulated within 1 K. The cold end unit 
was a water-cooled box made of 0.5-cm-thick SUS316 plating 
and measuring 30 x 30 x 6 cm3. Its temperature was main
tained within the approximate range of 290 to 295 K. 
Chromel-alumel sheathed thermocouples of 0.065 cm 

No. 
i 
2 
3 
4 

Symbol 
o 
e 
D 

• 

TH(K) 
374.1 
473.1 
574.1 
673.4 

T l ( K ) 
293.2 
293.7 
293.2 
294.0 

T m ( K ) 
333.7 
383.4 
434.6 

483.7 

Fig. 4 Temperature profiles within the glass bead layer 

Table 2 Values of AIC 

N 
1 

2 

3 
4 

5 

6 

A I C 

-384.19 
-380.04 

-362.78 

-367.49 

-366.56 

-358.64 

diameter were installed in the central part of the test section. 
The glass beads to be examined were then poured into the test 
section. The distance between the hot end unit and the cold 
end unit was 5.45 cm. The hot end unit was placed in position 
and the insulation was packed around the unit to prevent heat 
loss from the specimen sides. In each run, steady state was ob
tained in about 6 hr, and maintained thereafter for at least 2 hr 
before measurement. 

Results. Typical experimental values of mean effective 
thermal conductivities of glass beads are shown in Fig. 3 as a 
function of mean temperature between the hot and cold walls. 
Using the proposed method with 47 values of mean effective 
thermal conductivities obtained, the effective thermal conduc
tivities of glass beads at temperature 6 were calculated. The 
values of AIC for various orders of N are shown in Table 2. 
From this table the first-order polynomial expansion of the ef
fective thermal conductivities was found to be optimum. Con
sequently, the effective thermal conductivity of glass beads 
was determined to be 

AG(0)= 0.02513 + 0.686440 

The mean effective thermal conductivity defined by XG 

(17) 
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\G{B)de/(eHj-eLj) is shown by a solid line in Fig. 3. The 
agreement between XG and the observed mean effective ther
mal conductivity is excellent, and this suggests the validity of 
the proposed method. 

Calculation for Temperature Profile. Using XG(0) thus 
determined, we can predict the temperature profile in the glass 
bead layer by solving the energy equation (18) utilizing the 
finite difference method. 

A[ X c ( r / 1 ooo)^]=o, 

y = 0: T=TH, y=y0: T=TL. 

(18) 

(19) 

Predicted temperature profiles within the layer are shown by 
solid lines in Fig 4. Measured temperature profiles are also 
shown. As may be seen here, the predictions can be favorably 
compared with experimentally obtained results. This implies 
that temperature distributions within porous material can be 

accurately predicted, using the effective thermal conductivity 
determined by the proposed method. 

Conclusions 

An analytical method for estimating the effective thermal 
conductivities of porous materials from measured mean effec
tive thermal conductivities was presented. 

Results of numerical simultaneous performed for some 
typical cases showed the proposed method works well even in 
cases where input data used for inversion involves serious ran
dom error. Moreover, the effective thermal conductivities of 
glass beads were determined, and these effective thermal con
ductivities were applied successfully to predict temperature 
profiles within the glass bead layer. 
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Corrections to "Effect of Plate Inclination on Natural Convection From a Plate to Its Cylindrical 
Enclosure," by P. Singh and J. A. Liburdy, published in the November 1986 issue of the ASME JOURNAL OF 
HEAT TRANSFER, Vol. 108, pp. 770-775: 

1 On page 771, Table 1, Listing of test conditions, the headings for the second and seventh columns 
should read AT (°C). 

2 On page 775, the legend of Fig. 11 should be changed to read as follows: o , 6 = 90°; o , 6 = 60°; A , 
? = 30°; • , 0 = 0° 
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Perturbation Solutions for the 
Shape of a Solidification Interface 
Subjected to a Spatially Periodic 
Heat Flux 
In the manufacture of certain high-technology materials (such as strengthened com
posites for turbine and compressor blades) from a melt, it is essential to control the 
heat transfer conditions in such a way that a planar solidification interface is main
tained within a given tolerance. Spatial nonuniformities in the heat flux imposed 
along the solidification interface may cause deformation. In this paper we analyze 
the interfacial shapes resulting from a periodic heat flux variation along the inter
face. Two cases of practical interest are examined. In case (a) the amplitude of heat 
flux variation is assumed small compared to the mean value, and in case (b) the 
wavelength of the imposed heat flux variation is considered to be much larger than a 
characteristic length in the transverse direction. In both cases, sensitivity of the in
terface shape with respect to heat flux nonuniformities is also determined. 

Introduction 

In many metal casting processes it is important to maintain 
a planar solidification interface because of its effect on the 
resulting crystal structure. Typical applications include 
manufacture of eutectic alloys and other composite materials 
(Flemings, 1974; Siegel, 1978a, b; 1982; 1984; Siegel and 
Sosoka, 1982). It is well known that the shape of the solidifica
tion interface is directly influenced by the rate of convective 
heat transfer from the liquid metal to the interface. Accord
ingly, the interface shape can be controlled by properly 
regulating this convective heat flux. The heat flux along the in
terface may, in general, vary from one point to another. The 
main purpose of this paper is to study the effect of a given heat 
flux variation on the shape of the solidification interface. 

In an earlier work, Siegel (1982) examined this problem and 
determined the interface shape for a prescribed sinusoidal 
variation of the heat flux. He analyzed the case for which the 
amplitude of the heat flux variation Aq is much smaller than 
its mean value q,„ and derived an analytical solution for the 
shape of the interface by means of a conformal mapping pro
cedure. The primary objective of his analysis was to determine 
the sensitivity of the interface shape to the nonuniformity in 
the imposed heat flux, in terms of the wavelength and 
amplitude of the heat flux variation. In another paper, Siegel 
and Sosoka (1982) extended these results, with no restriction 
on the amplitude of heat flux variation. A further discussion 
of Siegel's (1982) work will be given later. 

In the present paper we develop perturbation solutions for 
the interface shape for the following two cases: (a) when M = 
Aq/q,„ is much smaller than unity (the case considered by 
Siegel, 1982), and (b) when the wavelength of the imposed 
heat flux variation is much larger than a characteristic conduc
tion length in the transverse (y) direction. In both cases we also 
derive solutions for the temperature distribution in the 
solidified region. We shall see that in case (a), i.e., for small 
M, it is possible to write the solutions for temperature and in
terface shape in the form of regular perturbation expansions 
in M. The situation in case (b) formally leads to a singular per
turbation problem. However, it turns out that an appropriate 
outer expansion can be found which satisfies all of the 
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boundary conditions of the problem. Thus, the outer solution 
itself constitutes the so-called composite solution, which is 
uniformly valid throughout the entire domain, and no 
boundary layer correction is required. 

It should be emphasized that in free boundary problems of 
the type considered here, the temperature and the interface 
shape may, in general, be tightly coupled. As a consequence, it 
may be difficult to find a solution for one without solving for 
the other. We shall see however that when a small or a large 
parameter is involved, as in case (a) or case (b), the present 
perturbation technique enables us to uncouple the problem for 
temperature from that of the interface shape. In other words, 
it is possible to solve for the temperature independently at a 
certain order of approximation and then determine the shape 
of the solidification interface at that order or vice versa. 

Formulation 

For the present purpose we consider the same geometry as 
that used by Siegel (1982). The configuration shown in Fig. 1 
displays a wavy interface between the liquid metal and the 
solidifying material. Along the cooled solid wall (y = 0), the 
temperature is maintained at Tw while the temperature along 
the interface remains at the freezing value Ts. The imposed 
heat flux on this interface is assumed to vary periodically in 
the x direction. Because of symmetry it is sufficient to analyze 
only the region between the vertical planes A-A and B-B (see 
Fig. 1). Since there is no heat transfer across these planes, they 
can be treated as insulating boundaries. Therefore, for the 
purpose of our analysis, we may consider the configuration 
shown in Fig. 2. This figure shows a rectangular container 
with insulated sidewalls. The bottom surface of the container 
is kept at a uniform temperature T„. The unknown upper sur
face y = h(x) is maintained at the freezing temperature Ts 

and is subjected to a heat flux which varies in a sinusoidal 
manner in the x direction. As pointed out by Siegel (1982), a 
similar configuration can be used as a model for a phase-
change energy storage device where free convection in the 
liquid causes a variation in the heat transfer coefficient along 
the solidification interface. 

In the solidified region, 0 < x < a, 0 < y < h{x), the 
temperature satisfies the Laplace equation 

T + T 
•* YY ' * v^ 

= 0 (1) 
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LIQUID 

Fig. 1 Schematic diagram of a solidification interface subjected to a 
spatially periodic heat flux 

T.=0 

Fig. 2 Model configuration in the physical plane 

This equation must be solved subject to the conditions 

y = 0: 

x = 0, a: 

/ = h(x): 

T=TW 

Tx = 0 

T=TS 

VT>n = qs(x)/k 

(2a) 

(2b) 

(2c) 

(2d) 

where the shape of the interface, described by h(x), is 
unknown and must be determined as part of the solution, 
along with the temperature distribution. The last condition 
prescribes the convective heat flux on the interface, where 
qs (x) is assumed to have a periodic variation given by 

qs(x)=qm+Aqcos(irx/a) (3) 

The normal vector n at the interface can be expressed as 

n = (l+h2
x)~'/2(-hxi+j) (4) 

i and j being the unit vectors in the x and y directions, respec
tively. Using this, equation (2d) can be rearranged as 

(\+hl)-y2(Ty-hxTx)=k-i[qm + Aqcos(irx/a)\ (5) 

It is convenient to scale the above equations and boundary 
conditions by introducing the following dimensionless 
variables (denoted by primes): 

x = yx', y = yy', h = yh', T=TW+(TS-TW)T' (6a) 

where 

y = k(Ts-Tw)/qm (6b) 

In these new variables, the dimensionless problem (after drop
ping the primes) can be written as follows: 

y = 0 

x=0,A 

y = h(x) 

T + T 
* XX ' -* y) 

T=0 

7 > 0 

T=\ 

-0 

(\+hx)~
U2(Ty-hxTx) = l+Mcos(irx/A) 

Here 

(la) 

Ob) 

(7c) 

(Id) 

(7c) 

A=a/y (8) 

and the quantity M in equation (7e), which was defined 
earlier, is a measure of the nonuniformity in the imposed heat 
flux. 

As mentioned in the introduction, Siegel (1982) analyzed the 
problem given by equations (7) for small M, using a conformal 
mapping technique. By defining a complex-valued function 
W(z) such that 

dW 

dz 
-Tr + iT„ (9) 

where z = x + iy, he showed that for small M, the horizontal 
and vertical gradients of temperature at the solidification in
terface obey the equation of an ellipse in the complex dW/dz 
plane. The ellipse was then mapped into a rectangle via a con-
formal transformation and in the process the shape of the 
unknown interface was determined. 

It should be pointed out that Siegel's (1982) analysis is based 
on the assumption that for small M, the interface shape can be 
described by a function of the form 

h(x) =N0~N1 cos (irx/A) +0(Nj) (10a) 

where (in the present notation) 

N o m e n c l a t u r e 

A = dimensionless length in 
the horizontal direction m = 

a - half-wavelength of heat 
flux variation along the NQ, N{ = 
solidification interface 

h (x) = function describing the in
terface shape n = 

i = unit vector in the x 
direction q = 

j = unit vector in the y 
direction Aq = 

k = thermal conductivity of 
the solidified material T = 

M = heat flux nonuniformity x, y = 
parameter. = Aq/qm 

quantity defined by equa
tion (16) 
coefficients in equation 
(10a), defined by equa
tions (10b, c) 
normal vector at the 
solidification interface 
convective heat flux from 
the liquid to the interface 
amplitude of periodic 
variation in q 
temperature 
horizontal and vertical 
coordinates 

z = x + iy 
y = characteristic length, 

defined by equation (6b) 
F = magnitude of interface 

distortion relative to the 
nonuniformity in the im
posed heat flux 

Subscripts 
/ = left sidewall at x = 0 

m = mean value 
r = right sidewall at x = A 
s = solidification interface 
w = cooled wall at y = 0 
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and 

N0 = (h, + hr)/2 

Nx=(hr-h,)/2 

(10ft) 

(10c) 

and ht and hr are the heights of the interface at the ends x = 0 
and x = A, respectively. The quantities N0 and TV, may be in
terpreted as the average height and the average distortion of 
the deformed interface. Note that since the shape of the 
solidification interface is not known a priori and must be 
determined as part of the solution, its end-point values h{ and 
hr are also not known beforehand. One of the objectives of 
the present study is to obtain a perturbation solution for the 
interface shape and the temperature for small M, in the form 
of a power series. We also construct a perturbation solution 
for the temperature and the interface shape for large A, with 
M not being restricted to values much less than unity. 

Case (a): Solution for Small M 

For small M, we look for a solution of the problem (7) in the 
form of the expansions 

T=T0(x,y) + MTl(x,y)+M2T2(x,y)+0(Mi) ( l la) 

h = h0(x)+Mhi(x)+M2h2(x)+Q(Mi) (lift) 

Substitution of these expansions into equation (7a) and the 
boundary conditions (7ft-e) leads to a sequence of problems in 
various orders in M. The problem at leading order is given by 

r„vv + Tn„„ = 0 (12a) 

with 

y = 0: 

x = 0,A: 

y = h0(x): 

' OXf + Ttyy — 0 

T0x = 0 

(l+h2
0xy

l'2(T0y-h0xT0x) = l 

(12ft) 

(12c) 

(12d) 

(12e) 

The boundary conditions at the interface, namely, (12c/, e), 
are derived by using the expansions (11) in (7c?, e) and ex
panding in Taylor series, in powers of M. It can be easily 
shown that a self-consistent solution of this problem is 

T0(x,y)=y, h0(x)=l 

These results show that in the leading approximation, the 
solidification interface remains flat. The lowest order 
temperature field in the solidified region is horizontally 
uniform, but varies linearly along the vertical direction. In the 
next order we have 

y = 0 

x = 0,A 

y = \ 

Tlxx + T2yy ~ 0 

T2=0 

7 ^ = 0 

T2=-Tlyhx-h2 

T2y=Vih\x+TXxhXx-

m1 

— f l 1 1 r-nc 

- Tlyyhl 

(17a) 

(17ft) 

(17c) 

(lid) 

(lie) 

The problem consisting of equation (17a) and the boundary 
conditions (17ft, c, e) has the solution 

m2 f 3/1 cos(2xx:A4)sinh(27r)'A4)" 
T2(x,y)=-

4 y + - l) 2ir cosh(2ir/A) 

Use of this result in the boundary condition (lid) then yields 

2-m2 

(18) 

h2(x)=- i~h- s(2*x/A)]—Y) (19) 
2 CTT L" ' 2(1 + m2) 

Higher order solutions for temperature and interface distor
tion can be obtained by proceeding in exactly the same man
ner. We shall not carry out these solutions any further. 

From the solutions obtained so far, the height of the inter
face at the ends x = 0 and x = A can be easily determined. We 
find 

Am ^ r m V 
h, = l-M + M2] -

7T 1 4 1 

A 4 + m2 

•K 1 + m2 
]+0(A^) (20a) 

. . r m r A 4 + m2 ~n 
M2 — m \ [ + Q ( M i ) (20ft) 

C 4 L i l+m1 J J 

and 

hr = l+M + i 
w 

Therefore, the magnitude of interfacial distortion from a 
planar interface (which corresponds to M=0) relative to the 
magnitude of nonuniformity in the imposed heat flux is given 
by 

r = TI7 (fir-h,)=— tanh(Tt/A)+0(AP) (21) 
2M IT 

Case (b): Analysis for Large A 

The key to a proper asymptotic solution for large A is the 
fact that the characteristic length scale in the x direction is of 
0(A). Accordingly, we introduce a new horizontal variable x 
defined by x = A~lx. In terms of this new variable, the gov
erning equation (7a) for temperature becomes 

v4 1 ZC + 1 v. = 0 (22a) 

^ = 0: 

x = 0,A: 

y=l: 

T\XX + T\yy — 0 

r,=o 
Tlx = 0 

T, = -h{(x) 

TXy = cos (TX/A ) 

(13a) 

(13ft) 

(13c) 

(13d) 

(13c) 

The associated boundary conditions (7ft-e) transform into 

(1+A 

y = 0: 

x=0, 1: 

y = h(x): 

-2h/rl/2(Ty 

T=0 (22ft) 

Tx = 0 (22c) 

T= 1 (22d) 

-A~2~hxTx)=qs(x) (22e) 

The solution for Tx satisfying equation (13a) and the 
boundary conditions (13ft, c, e) is found to be 

A cos(irx/A) sinh(TryA4) 
7\(x,;>)=- (14) 

•K cosh(7r//l) 

Applying this result in equation (13o0. we find that the pertur
bation of the interface from its flat position is 

Am 
h,(x) = cos(irx/^4) 

where 

m = tanh(Tr/,4) 

At 0(A/2), we must solve the problem 

(15) 

(16) 

where the solidification interface y = h (x) is written as y -
h(Ax) = h(x) and 

qs (x) = 1 + M cos -KX (22/) 

(Note that M need not be restricted to values much smaller 
than unity in the present case.) 

It is apparent from equation (22a) that for large A, the 
problem at hand is of the singular perturbation type. It can 
therefore be solved by the method of matched asymptotic ex
pansions. The solution typically consists of an outer approx
imation valid away from the sidewalls and an inner approx
imation near each sidewall, which are joined together by 
means of an asymptotic matching procedure. However, we 
shall see that in the present case no inner approximation is 
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necessary and an appropriate outer solution satisfies all the 
boundary conditions, including those at the sidewalls. The 
outer solution is found by writing the expansions 

T=f0(x,y)+A^f1(x,y)+A-2f2(x,y)+0(A'i) (23a) 

h = h0(x)+A~lhi(x)+A-2h2(x) + 0(A-i) (23b) 

Substituting these expansions into (22), we obtain at leading 
order, the equation 

T, Oyy = 0 (24a) 

with the boundary conditions 

y = 0 

x=0, I 

y = h0(x) 

f0 = 0 (24b) 

faf = 0 (24c) 

f0 = 1 (24d) 

f,y = qs(x) (24e) 

Clearly the solution for T0 satisfying (24a, b) and (24e) is 
given by 

fQ(x,y)=qs(x)y (25) 

As a consequence, equation (24d) shows that the solidification 
interface, to leading order, is described by the function 

~h0(x) = \/qs(x) (26) 

Note that since qs(x) has the value (22/), the solution (25) 
automatically satisfies the boundary conditions (24c). In other 
words, the leading order outer solution for temperature 
satisfies all the boundary conditions and therefore no 
boundary layer correction is needed near the sidewalls. Note 
also that unlike the case for small M of the previous section, 
the solidification interface (26) is nonplanar in the leading 
approximation. 

The problem in the next order is given by 

(27a) 

(21b) 

(27c) 

(27fi0 

(27e) 

It is straightforward to show that the above problem has only 
the trivial solution 

fl(x,y)=hl(x) = 0 (28) 

At 0(A ~2), the temperature satisfies the equation 

y = 0 

x = 0 , 1 

y = h0(x) 

Tlyy = 0 

r,=o 
7tf = 0 

f,+S,(*)fi 
fly = o 

• tyy' -r„, (29fl) 

and the boundary conditions 

y = 0: 

x = 0, 1: 

y = h0(x): 

f2 = 0 (29b) 

f2i = 0 (29c) 

f2=-qs(x)h2 (29d) 

T2y = hiT<si+Vif<)yhli. (29e) 

In view of the solution (25), equation (29a) can be simplified 
to 

f2yy=-q^x)y (30) 

where a prime denotes d/dx. Similarly the flux condition (29e) 
can be expressed as 

Wsix)]2 

y = h0(x): T2y=- •Vi (31) 
ms(x)? 

Thus we need to solve equation (30) subject to conditions 
(29b) and (31). The solution is easily found to be 

>2 

T2(x,y) = 
1q\ 

•y-
6 r (32) 

An expression for h2(x) is then obtained from (29d). We have 

h2(x) •• 
3qs'

2-2qsq; 

6q5
s 

(33) 

Once again, note that the solution (32) satisfies the boundary 
conditions (29c) at x = 0, 1 as well. As a result, thermal 
boundary layers must be absent up to this order. Since qs (x) is 
given by (22/), we can write (33) in the form 

- „ Mir2 4 cos 7ri + M ( 5 - c o s 2irx) 
h2(x) = — -r—rz T-5 (34) 

12 ( l + M cos irxy 

Similarly, it follows from (32) that 

MTT2 T2(x,y)=- (cos irx)y3 

Mir2 

k M+cos -KX 
- , b (35) 

2 L ( l + M cos Tri)3 J ' 
From the solutions obtained above, the heights of the 

deformed interface at the two ends are given by 
1 1 f MTT2 1 / 1 1 1 I" MTT2 j / 1 \ 

' " l+M+^4 rL3(l+M) 4J+ VA^J 

K=-
1 1 

3(1 +M)4 

M-K2 

bi^]+0(-jr) 

(36a) 

(366) 
l-M A2 L 3 ( l - M ) 4 . 

so that the amplitude of deformation relative to the amount of 
nonuniformity in the imposed heat flux becomes 

1 1 

(K-h,) = 2M l - M 2 

— r -
i^42 L( 

1 1 -M^y ( l - M ) 4 ( l + M ) 4 . 

Expanding the result (37) for small M, we find that 

r ~ i - -
3^42 

(37) 

(38) 

which is asymptotically correct to 0(M2). The same result can 
be deduced from equation (21) by expanding tanh (ir/A) for 
l a rge r , up to 0(1A43). Therefore, the solutions (21) and (37) 
yield identical results for Y when M is small and A is large. 
Note also that up to these orders, T is independent of M. 

Results and Discussion 

Consider case (a) first, which applies for small M. For this 
case, the heights of the solidification interface at the two ends 
x = 0 and x = A are given by equations (20a) and (20b), 
respectively. The values of h, and hr are listed in Table 1 for 
several choices of A and M. For comparison, the corre
sponding quantities derived by Siegel (1982) using a conformal 
mapping approach are also included in the table. 

The interface shapes correct through 0(M2) are plotted in 
Fig. 3 for M = 0.3 and various values of A. The horizontal 
line in this figure corresponds to a spatially uniform heat flux 
(M = 0) so that the interface remains plane for all A. Figure 4 
shows the deformed interface shapes for A fixed (A = 2) and 
several values of M. It is apparent from this figure that a 
change in the value of M tends to alter the curvature of the 
solidification interface. 

The quantity of most physical interest, namely, the amount 
of interface distortion relative to the magnitude of nonuni
formity in the imposed heat flux is determined by equation 
(21). The values of this ratio V for selected values of A and M 
are given in Table 1. It can be readily seen from this table that 
for a given value of A, T is independent of M, consistent with 
equation (21). Furthermore, (21) shows that for small A, Y 
becomes small, and is approximately equal to Amf-w (or A/T; 
since m—• 1 as /I—0). This trend is also observed in Table 1. A 
comparison of these results with those of Siegel (1982) reveals 
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Table 1 Results for Interface height and distortion in case (a) 

r = (t> " h„)/2M 

0.00 0.20 0.40 0.60 0.80 1.00 
x / A 

Fig. 3 interface shapes for M = 0.3 and various values of A in case (a) 

0.00 0.20 0.40 0.60 0.80 1.00 

«/A 

Fig. 4 Interface shapes for A = 2 and various values of M in case (a) 

Fig. 5 Amplitude of interfacial distortion relative to the amplitude of 
heat flux variation in case (a) 

that the present results for h,, hr, and T are typically lower 
than those obtained by Siegel (1982). However there seems to 
be general agreement between the results derived by these two 
analyses. The variation of V with A for small Mis displayed in 
Fig. 5. 

0 

0 

1 

2 

4 

8 

25 

5 

0 

0 

0 

0 

0.1 

0.2 

0.3 

0.1 

0.2 

0.3 

0.1 

0.2 

0.3 

0.1 

0.2 

0.3 

0.1 

0.2 

0.3 

0.1 

0.2 

0.3 

Siegel 
(1982) 

0.9924 

0.9855 

0.9791 

0.9848 

0.9710 

0.9582 

0.9698 

0.9423 

0.9171 

0.9451 

0.8965 

0.8532 

0.9230 

0.8574 

0.8013 

0.9131 

0.8403 

0.7787 

Present 
Work 

0.990040 

0.976074 

0.958103 

0.982579 

0.962148 

0.938707 

0.967793 

0.934596 

0.900409 

0.943347 

0.890165 

0.840454 

0.921893 

0.854569 

0.798027 

0.913134 

0.842853 

0.789156 

Siegel 
(1982) 

1.0084 

1.0178 

1.0284 

1.0168 

1.0355 

1.0568 

1.0335 

1.0709 

1.1135 

1.0623 

1.1337 

1.2163 

1.0911 

1.1999 

1.3318 

1,1051 

1.2346 

1.3976 

Present 
Work 

1.005955 

1.007905 

1.005849 

1.014410 

1.025810 

1.034199 

1.031217 

1.061445 

1.090683 

1.060123 

1.123716 

1.190780 

1.088890 

1.188562 

1.299017 

1.103450 

1.223485 

1.360104 

Siegel 
(1982) 

0.0798 

0.0807 

0.0821 

0. 1597 

0.1613 

0.1642 

0.3182 

0.3215 

0.3272 

0.5861 

0.5930 

0.6050 

0.8402 

0.8562 

0.8842 

0.9640 

0.9856 

1.0315 

Present 
Work 

0.07958 

0.07958 

0.07958 

0.15915 

0.15915 

0.15915 

0.31712 

0.31712 

0.31712 

0.58388 

0.58388 

0.58388 

0.83498 

0.83498 

0.83498 

0.95158 

0.95158 

0.95158 

Table 2 Results for interface height and distortion in case (b) 

r = (h r - hc)/2M 

0.1 0.909653 1.109858 

0.2 0.834127 1.245984 

0.3 0.770095 1.418295 

0.4 0.715142 1.641282 

0.5 0.667479 1.934203 

1.001025 

1.029643 

1.080333 

1.157675 

1.266724 

0.1 0.909181 1.110911 

0.2 0.833460 1.249357 

0.3 0.769369 1.426927 

0.4 0.714423 1.662605 

0.5 0.666797 1.989472 

1.008650 

1.039743 

1.095930 

1.185228 

1.322675 

0.1 0.909113 1.111061 

0.2 0.833365 1.249839 

100 0.3 0.769265 1.428160 

0.4 0.714320 1.665651 

0.5 0.666699 1.997368 

1.009738 

1.041186 

1.098158 

1.189164 

1.330669 

The main results for case (b), which corresponds to A > > 
1, are presented in Table 2. In this case, the heat flow tends to 
become locally one dimensional, consistent with equation 
(25), and the interface follows the prescribed heat flux in an 
"inverse" fashion, according to equation (26). The interface 
shapes correct through 004 ~2) are shown in Fig. 6 for M = 
0.5 and various values of A. Observe from this figure that as A 
is changed through large values, the interface shape remains 
largely unaffected everywhere except in the vicinity of the 
right sidewall. This is also seen from equation (36) which 
shows that for a given value of M(with M < 1), the change of 
hr with respect to A is much greater than that of h, with 
respect to A. Interface shapes for A = 20 and various values 
of Mare drawn in Fig. 7. The horizontal line in this figure cor
responds to M = 0. The values of the amplitude ratio T, which 
are given in the last column of Table 2, indicate that the sen
sitivity of the interface shape with respect to Mmay be signifi
cant especially when M is not small. These values are 
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0.00 0.20 0.40 0.60 0.80 1.00 
x/ A 

Fig. 6 Interface shapes for M = 0.5 and various values of A in case (b) 

0.80 1.0 0 0.0 0 0.20 0.40 0.60 

Fig. 7 Interface shapes lor A = 20 and various values of M in case (b) 

calculated using the formula (37) which exhibits an explicit 
dependence of V on M. 

At this point it is appropriate to emphasize the nature of the 
asymptotic solution obtained here for large A. We have seen 

that when A > > 1, the outer solution, which is generally valid 
away from the sidewalls, satisfies all the boundary conditions 
of the problem, including those at the sidewalls. In other 
words, the larger limit, although formally singular, leads to a 
(regular) uniformly valid solution throughout the entire do
main. Analogous results have been found in many other ap
plications, for example, in the study of rivulet flows (Allen 
and Biggin, 1984; Rothfeld and Towell, 1966) and in the 
spreading of viscous liquid drops on a plane surface (Hocking, 
1981). 

Concluding Remarks 

Using perturbation methods we have analyzed the 
solidification interface shapes for the cases (a) M < < I, A = 
0(1), and (b) M = 0(1), A >> 1. In the first case the 
magnitude of interface distortion T, relative to the amplitude 
of heat flux nonuniformity, is found to be practically insen
sitive to M. In case (b) on the other hand, F is shown to be 
equal to 1/(1-M2) , to leading order. This means that when 
the wavelength of the imposed heat flux variation is large, the 
deformed interface responds rather significantly to the 
nonuniformities in heat flux variations, especially when M is 
not too small. 

A major advantage of the present perturbation methods is 
the ease with which the successive approximations for the in
terface shape and temperature can be computed, in both cases. 
The results obtained here can be used to determine the extent 
to which the spatial nonuniformities in the imposed heat flux 
must be controlled in order to keep the interface distortion 
within a given tolerance. 

"Longitudinal Flow of a Lenticular 
The Physics of Fluids, Vol. 17, No. 
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A Thermal Instability in the 
Laser-Driven Melting and 
Recrystallization of Thin Silicon 
Films on Glass Substrates 
This paper develops a conductive heat transfer stability theory for the laser-driven 
melting and recrystallization of thin silicon films deposited on conductive (glass) 
substrates. The important parameters are: laser power, laser intensity distribution, 
and beam scanning speed. Basic state temperature distributions are obtained for 
straight phase boundaries. These calculated temperature distributions show the 
origin of instability. A linear perturbation analysis is used to obtain the leading 
order corrections to the basic-state temperature fields. The perturbation time rate of 
growth, as a function of the disturbance wavelength, is then predicted. 

1 Introduction 

The trend in new semiconductor technology is toward 
smaller-sized and three-dimensional devices. Thus, it is of fun
damental interest to produce single-crystal, thin silicon layers 
on amorphous substrates. In the electronics microfabrication 
technology, the most commonly used method to grow thin 
silicon layers is chemical vapor deposition (C.V.D.). The 
material obtained in this way has a definite crystalline struc
ture, but it presents many imperfections, such as grain 
boundaries. These grain boundaries are known to reduce the 
value of the material significantly as an active component in 
electronic circuits. 

The crystal structure has been improved by the method of 
laser heating. The basic experimental process requires sweep
ing a laser beam across a thin silicon layer. A molten spot of 
silicon is produced when the laser beam intensity is sufficiently 
high. Consequently, silicon material melts and then 
recrystallizes in the wake of the laser spot. A recrystallized 
material that is free of small grain boundaries is desired. The 
heat transfer associated with laser-induced silicon crystal 
growth has been delineated by experimental observations, 
mathematical analysis, and numerical simulations. 

It has been experimentally observed that long, narrow 
crystallites propagate in a direction normal to the solidifica
tion boundary. It is evident that the temperature fields in
duced in the silicon layer by the sweeping laser beam deter
mine the grain size and the quality of the crystal structure. 

Bosch and Lemons (1981, 1982) studied the radiatively in
duced melting of thin silicon layers. In their experiments, the 
silicon molten spot was viewed by using the reflected, emitted, 
and transmitted light. They found that for a region of laser 
power, solid lamellae would penetrate into the molten spot. 
They suggested two possible explanations for the formation of 
these solid inclusions within the molten phase: (i) constitu
tional supercooling, originating from possible oxygen im
purities; (if) phase separation in liquid silicon. Lemons et al. 
(1983) used the Mullins-Sekerka (1964) type of linear stability 
analysis to predict the characteristic spacing of a straight 
silicon phase boundary, as a function of both the temperature 
gradient at the interface and an assumed impurity concentra
tion. The same type of analysis was used by Narayan (1982) to 
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study the formation of cellular growth patterns, induced in 
silicon alloys by pulsed laser irradiation. 

Hawkins and Biegelsen (1982) investigated the coexistence 
of solid and liquid silicon phases. In their study no impurities 
could be detected. They showed the importance of the silicon 
reflectivity increase upon melting. Solid silicon absorbs twice 
as much heat as the neighboring liquid silicon. This appears as 
a very unusual phenomenon of superheated solid lamellae 
coexisting within the molten silicon. This effect has been 
studied experimentally by Nemanich et al. (1983a) and 
Biegelsen et al. (1983). It has been confirmed that small, solid 
regions initially occur at what appear to be random locations 
within the molten silicon. These inclusions tend to coalesce in
to larger regions, forming stable patterns coexisting with the 
liquid matrix. Patterns of aligned, alternating solid and liquid 
silicon stripes were observed by Nemanich et al. (1983b). 
These experimental results motivated an analysis by Jackson 
and Kurtze (1985). They used linear stability theory arguments 
to show that an infinitely wide stationary light source, having 
a uniform intensity distribution can generate stable patterns of 
alternating regions of superheated solid and supercooled 
liquid stripes. In their analysis they were not concerned with 
the temperature distribution in the glass substrate. 

In this study, the temperature fields in both the silicon layer 
and the glass substrate are determined by solving the conduc
tive heat transfer equations for the case of a moving heat 
source. Assuming that a time-independent, basic-state 
temperature solution has been obtained, departures from this 
temperature distribution will be examined. Linear stability 
analysis will be used to study the time rates of growth of small 
amplitude perturbations from the calculated basic-state 
solutions. 

2 Analysis 

A sketch of the silicon layer and the substrate structure is 
shown in Fig. 1; a silicon layer of thickness lsj is shown 
deposited on a glass substrate. A laser beam is focused on the 
layer. The beam moves at a uniform velocity V. A system of 
Cartesian coordinates (x, y, z) attached to the moving spot is 
considered. The solid silicon regions behind the solidification 
edge and ahead of the melting front are identified as I and II, 
respectively. In this mathematical model the external heating 
source is assumed to be of infinite length and is assumed to 
have a uniform intensity distribution in the y direction. 

The silicon layer is sufficiently thin, so that it will not have a 
significant temperature variation in the vertical direction. 
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GLASS 
SUBSTRATE 

Fig. 1 Cross section through a thin silicon layer of thickness /s, = 0.5 
jim deposited on a glass substrate; S and L are the solid and the liquid 
regions, respectively; the positions of the solidification edge and the 
melting front are xs and xm , respectively 

However, it is necessary to consider the heat conducted to the 
glass substrate. The temperature field in the silicon layer 
depends upon the spatial coordinates (x, y) and upon time. 
The heat transfer in the silicon layer is represented by the in
tegrated—across its thickness—heat conduction equation. 
Hot solid silicon, near the melting point, absorbs light almost 
entirely within a skin surface layer. This is also true for liquid 
silicon. At lower temperatures, the light penetration depth in
to the solid silicon layer is larger and the heat is more 
distributed through the thickness. The heat conduction equa
tions are: 

(a) for the solid silicon: 

dt 
dTsi,s ( d2T • d2T 

dx2 by * ) 

i\-R,)Q«t-Qn 
(1«) 

(b) for the liquid silicon 

d2T, 
-— V — ; = a 

dt dx •4 dx2 

sU+d2Ts 

dy2 *) 

d-R,)QeXl-Qsl 

Psi^p,si si 

(c) for the glass substrate 

dt 
.-V-

dx 

'd2T„, d2T„, d2Tt 

dx2 dy2 dz f) 

(lb) 

(2) 

in the above equations TsiyS, TsiJ and Tgl represent the 
temperature differences above the ambient temperature. The 
unknown function Qgl (x, y, t) represents the heat conducted 
to the glass substrate. 

The imposed external heating distribution is a function of 
the coordinate in the direction of motion. When the transient 
temperature effects disappear, quasi-static conditions are 
established. The change of phase boundaries could be ex
pected to remain planar and fixed with respect to the moving 
heat source. The positions of the solidification and the melting 
interfaces are identified as xs and xm, respectively. The 
crystallization temperature at the solidification interface 
depends upon the local interface geometry and the nominal 
melting temperature in the following way: 

r=r„,(i + rr,) 0) 
This is the general form of the Gibbs-Thomson boundary con
dition (Woodruff, 1973). The constant Y is a surface tension 
parameter and r\ is the local curvature of the solidification in
terface that is in the direction of the outward normal to the 
crystal outer surface. The solidification interface is allowed to 
depart from a straight line 

x=£s{y,t)+xs (4a) 

N o m e n c l a t u r e 

B = 
CP = 
K = 

Kn = 

K, 

hi = 
L = 
n = 

Q = 

Qext = 

Qsi = 

QT = 

Go = 

stiffness matrix of a linear 
system of algebraic equations 
right-hand-side vector 
heat capacity 
thermal conductivity 
modified Bessel function of 
the second kind of zeroth 
order 
modified Bessel function of 
the second kind of first order 
thickness of the silicon layer 
latent heat of fusion 
outward normal to the phase 
boundary directed into the 
liquid region 
rate of heat generation per 
unit volume 
external heat source power 
density 
heat conducted to the glass 
substrate 
total power of an infinitely 
wide laser beam per unit 
length 
peak intensity of external 
heat source 

R 

t = 
T = 

T = 
V = 

x, = 

y = 

l/e irradiance half-span of 
an infinitely wide Gaussian 
beam 
reflectivity of the silicon layer 
ratio of the amplitude of 
solidification interface distur
bance to the amplitude of 
melting interface disturbance 
time 
temperature 
melting temperature 
speed of light source 
coordinate along the direc
tion of motion 
location of the melting 
interface 
location of the solidification 
interface 
coordinate in the lateral 
direction 
coordinate into the glass 
substrate 
speed of the phase boundary 
along the direction of the 
outward normal into the 
liquid region 
thermal diffusivity 

Vsl 

r 
em 

sin 

r, 
V 
* 

p 
a 

0} 

= silicon solid-liquid interface 
free energy 

= capillary constant 
= amplitude of the melting in

terface disturbance 
= disturbance of the melting 

interface 
= disturbance of the solidifica

tion interface 
= local radius of curvature 
= dummy variable of 

integration 
= density 
= time rate of growth of the 

disturbance 
= disturbance wavenumber 

Subscripts 

gl 
I 

si 
s 

= glass 
= liquid silicon 
= silicon 
= solid silicon 

Superscripts 

0 = zeroth-order quantity 
1 = first-order quantity 

I, II = solid regions, see Fig. 1 
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The expression for the local radius of curvature is 

(f^/dy2 

[-(f) (46) 

The heat flux boundary condition is applied at the solidifica
tion interface. The surface free energy contribution represents 
the work needed to form a curved interface Wollkind, 1976 

K, 
dT. dTsi,l . 

«> , -Ksij——^ = wn[psiL + ys,ri\ (5) 
on on 

This equation is written in the following form: 

IV (bT«* dTs!-s a^\ 
L "A dx dy dy) 

_K /BT«j dTsU d{s\l 
s,'\ dx dy dy / \x=xs + ns 

= (v+^-)(PsiL + yslr)) 

A similar condition is applied at the melting front 

(6a) 

\Ksi,s y- 0 dx dy dy 

dT,,i dTsU d£, 
K. (dTs,J sU dt>")] 

sl'\ dx dy dy / lx=xm + (m 

= (v+^jf)(PsiL + yslv) (66) 

A periodic perturbation is assumed at the melting front. This 
is the Mullins-Sekerka (1964) type of linear stability analysis 

fm (y, t) = e,„ cos wye"- (7) 

The solidification boundary will be perturbed at the same fre
quency, but at a different amplitude 

ts(y,t)=emrs cos wye<" (8) 

The following equations are obtained by applying the 
Gibbs-Thomson boundary conditions on the perturbed 
interfaces: 

Tsi(xm + Sm,y,t) = Tm + emYTmw2 cos wye-' (9) 

Tsi (xs + S„y,t) = Tm -emr sYTmw2 cos wye"' (10) 

The above boundary conditions imply a regular normal-mode 
small amplitude expansion for the temperature field 

TsU (x, y,t) = T°sU (x) + e„, PsU (x) cos aye"' (11a) 

TsiiS (x, y,t) = n,-s (x) + em Tl
siyS (x) cos wye1" (116) 

Tgl (x, y, z, t) = T°g/ (x, z) + e,„ Tg, (x, z) cos wye" (12) 

The heat flux, conducted to the glass substrate, is also per
turbed to determine the induced temperature field 
disturbances 

Qg,(x,y,t)=Q(>gl(x)+emQ1
gl(x)coswye<" (13) 

The above temperature and heat flux expansions are used to 
order the heat conduction equations and the boundary condi
tions. The basic-state and leading order boundary value 
problems are then obtained. 

2.1 Basic State Analysis. The construction of a 
mathematical model that will describe accurately the variation 

of the temperature field in the vicinity of the change of phase 
boundaries is sought. For this purpose it is necessary to define 
the location of the interfaces exactly. 

The silicon and glass material properties appear in the 
governing equations; these material properties could be allow
ed to change with temperature. However, the thermal conduc
tivity of the solid silicon does not change much for 
temperatures close to the melting point and for liquid silicon it 
is practically a constant. Therefore, it may be expected that 
the dependence of the material properties on temperature will 
act as a second-order effect on the temperature gradient 
distribution close to the solid-liquid interfaces; this effect will 
not grossly alter the character of the solution obtained. In the 
calculations the values of the silicon properties at the melting 
point were used. This simplifies the analysis by keeping the 
temperature field equations linear. 

The laser heating is treated as being absorbed only in the 
thin silicon layer. The thermal radiation and convection losses 
through the top silicon surface are negligible compared to the 
high irradiance values, which are necessary to drive this 
process. 

The basic-state temperature field equations are given below: 

(a) for the solid silicon 

v dn. (i-Rs)Qex,-Q°ei ^n> 
dx2 dx - + - K 1 

= 0 

(b) for the liquid silicon 

cf^u . V d7*u 
- + 

(\-RdQex,-Q\l 
dx2 asU dx 

(c) for the glass substrate 

v an, 

Ksijlsi 

d 2 r > g l + d2r>gl 

=o 

(14a) 

(146) 

(15) 
otgl dx dx2 dz2 

The temperature far from the laser heating must vanish 

n„.rI(±oo)=o (i6) 
7 ° , ( ± o o , z ) = 0 (17a) 

T%i(x, + ° ° ) = 0 (lib) 

The boundary conditions at the solidification and the melting 
interfaces are 

K,: 

-* si,I \%s ) ~ * si,s V.-*- ) = T 
s > x m 

*• si,I \Xm ) ~ l sjjS \Xm ) 1 m 

U1 SI,S IS SI,I 
— A r i l 

dx \x=xs ' dx 

dn, 
dx 

11 drtn 
x=xm ' dx 

= PsiLV 
x = xs 

= PsiLV 
x xm 

(18a) 

(186) 

(19a) 

(196) K.: 

The silicon temperature assumed identical to the glass top sur
face temperature 

n , ( x ) = n„ (x ,0 ) , - o o < x < +oo (20) 

Therefore, the quasi-static temperature distribution in the 
glass substrate can be expressed by an integral equation over 
the .xr-axis (Carslaw and Jaeger, 1959; Rosenthal, 1946): 

1%{x,z)--
1 

rf„ • j : 
V(x-j) 

Q%tt)e~ 2asi K0[ 
KV[(x-S)2+r^i 

2a„, 
] * (21) 

When the locations of the melting and the solidification inter
faces xs, xm are fixed, then the zeroth-order temperature can 
be found. The boundary conditions (16)-(18) must be 
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satisfied. To arrive at solutions in the form of integral expres
sions a standard Green's function technique is applied. 

The temperature in region I is given below: 

VpsicnJxi U -'PsiCp,si'si ^ J °° 

V(i-xs) m-x). 

[(1 -Rs)QeX<tt)-Q%(Z)l[e °si,s ~e "*» \di 

n f - j r j ) 

+ j* ' [< i - -R , )Qe*(*) -G° g /U) ] [e "*••> -l]dt} <22) 

The temperature in the liquid silicon region is given by 

i 

*si,l (•*) = Tm 
'xm VX~ 

[J* [(l-/?/)Gerf(«-GS/(«J 

Vxs ~V[x-(xm+xs)] Vj -V\x-(xm+B\ 

— e asi,i + e asi,i + e asi,i — e asi,i rf£ 

\]m [(i-R,)QexM)-Q%tt)\ 

— e asi„ 

Vxm -V\x-(xm+xs)\ VI -V\x-<,xs+i)] 

j +e asij +easi,i —e asi,i ']#] (23) 

Finally, the temperature in solid region II is given by 

-V{x-xm) 

1%,*{x) = Tme °» 
1 

*Psi^p,srsi L U*M 

[(l--R,)Q«/(f) -Q°g/(f)][e 
-V{x-xm) -V(x-i) 

asi,s — e asi,s dH 

mine whether the given laser power is sufficient to melt the 
silicon layer, uniformly solid material is assumed in the 
beginning 

n.,w=-
1 

vPsic
P,Jsi (-•! -°° a:, 

-K ( j r - f ) 

" [ ( i - ^ ) Q « / ( € ) - Q 5 / ( € ) ] ^ } (26) 

If the temperature exceeds Tm, melting can be assumed. Then 
a search for the location of the interfacial boundaries is made. 
In this first search, a rather coarse x-axis subdivision is used. 
Once the approximate positions are found, a finer grid spacing 
is applied. Newton's method is then used to locate the phase 
change boundaries exactly. 

2.2 Linear Stability Analysis. The temperature perturba
tions are given by the following differential equations: 

d2^ 

dx2 

v dry 

\ a.„-... / 
igi 

K / 

&T\ui_ + _y dT\u 

dx2 
asi,l dx 

V dT\i _ d2Tl d2T\ 

(27) 

(28) 

a 2 • fl 2 i - • r e (29) 

dx2 dz \ a
gr 

Expanding the zeroth-order temperature field solution, the 
temperature perturbation boundary conditions are derived 
from equations (9) and (10) 

+ r?>2] 

oigi dx K?-("^)l 

-* s/,s v-^s ) ~~ ~~ ?s I ~7~ 

dx 
Tsu(xs) - — rs + TT„, 

Tsi,l(Xm) 

Tl • (x 1 = 

\dT\i 
V dx 

-r7>2] 

d1%,* l" _ r r 2 
G?X 

(30) 

(31) 

(32) 

(33) 

-V(x-xm) 

+ ^ " [(1 - * , )Q , , , (f) - Q°, (f)] [e «*, - l ]d$] (24) 

By satisfying equation (20), three integral expressions—one 
for each silicon region—are obtained. They must be solved 
simultaneously for the unknown heat flux Q°gl. The x axis is 
discretized and the kernel is integrated over each interval, to 
obtain a system of linear algebraic equations 

The first derivatives of the temperature about xs and x„, are 
also expanded in a similar manner. 

The perturbation heat balance conditions across the inter
faces are obtained from equations (6a) and (6b) 

- f^r" 
si,s i 

K, 

[A°]{Q%] = {B0} (25) 

The linear system given by equation (25) can be solved for the 
unknown average heat flux over each interval [*>_!, Xj], I = 
1 n. The zeroth-order temperature distributions are 
then determined. The thermal gradients are calculated by dif
ferentiating equations (22), (23), and (24) with respect to x us
ing Leibniz's rule for an improved evaluation of the 
temperature gradients over that obtained by simply taking the 
finite difference. This is an advantage of the Green's function 
method. The heat balance conditions (19a) and (196) give two 
simultaneous equations for the unknowns xs and xm. To deter-

dx dx2 

-K, (dTk 
sUClx~ 

" ] 
x = x,„ J 

-KsU 

dx2 

=psiL(a+Tw2V) 

' } 
(dTiu 

cdT\is I1 cfn 

" 4 dx l-x, s dx2 

I dx x=x„ s dx2 

--psiLrs(a-^2V) 

Xr. J 

(34) 

(35) 
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Fig. 2 Basic-state temperature distribution for a Gaussian beam of 
peak intensity Q0 = 0.65 x 108 W/m2, - = 40 urn, and V = 5 mm/s 
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Fig. 3 Basic-state temperature distribution for a Gaussian beam of 
peak intensity Q0 = 1.60 x 108 W/m2, r = 40 Pm, and V = 0.1 m/s 

The second derivatives of the basic-state temperature field are 
calculated analytically from equations (22), (23), and (24). 

For given a and rs the leading order perturbation 
temperature field that satisfies boundary conditions (30)-(33) 
is found. The solution to equation (29) can be written in the 
form of an integral equation, according to Rosenthal (1946) 

T\,{x,z) = 
1 

irKol s: V(x-j) 

QUS)e 2<V 

*.WIK£) • " • ^ - £ ) 2 + z 2 }]« (36) 

A Green's function method is used to solve equations (27) and 
(28). This technique is very similar to the one used for the 
calculation of the zeroth-order temperature fields. 

As in the case of the quasi-static solution, a linear system of 
algebraic equations is obtained 

[AiHQl
gl} = {& (37) 

The above system is solved for Q\t and the solution is im
proved by the method of successive iterations to estimate the 
residuals. Equations (34) and (35) provide the additional con
ditions for the determination of a and rs. Newton's method is 
again used and it shows convergence after a few iterations. 

3 Results 

In the calculations, a Gaussian intensity profile is assumed 
for the external heat source 

Qext M = Qo exp (-4> - O O < J C < + O O (38) 

The external adjustable parameters are Q0, r', and V. The 
temperature distribution obtained for r = 40 jim, Q0 = 0.65 
X 108 W/m2 , and V = 5 mm/s is shown in Fig. 2. As the 
beam scanning speed is increased to 10 cm/s, the liquid silicon 
region appears behind the center of the laser beam. Hence, 
due to the reflectivity rise upon melting, the difference be
tween the heat absorbed by the adjacent solid and liquid 
phases will be larger. The basic-state solution has positive 
temperature gradients at the melting front and negative 
temperature gradients at the solidification trailing edge. The 
mechanism for the prediction of superheated solid in the 
neighborhood of the melting front can be seen by examining 
the following equation. 

— T 
V 1 

K J J* dT° i11 

dx U=->... 

U\-R,)Qa,U)-&glmdl (39) 
The temperature derivative at the melting phase boundary is 
shown to depend on the local external heating and the heat 
loss to the glass substrate. This temperature gradient can be 
either negative or positive. The positive part of the solid 
silicon temperature gradient depends on the location of the 
phase boundary. The temperature gradient at the phase 
boundary will become steeper for the smaller heating values. 

Basic-state temperature fields are shown in Figs. 2 and 3. 
The corresponding stability diagrams are shown in Figs. 4 and 
5. The time rate of growth of the phase boundary disturbance 
is shown as a function of the disturbance wavenumber. 

Figure 4 shows that the interface disturbance rate of growth 
is negative for all o>. This growth is monotonically decreasing 
for increasing wavelength. Thus, the corresponding system is 
stable for small interface disturbances. 

A long-wavelength solid silicon protrusion formed at the 
melting front tends to absorb more heat. Consequently, this 
protrusion tends to remelt. Conversely, a liquid penetration 
into the solid must reject more heat and a return to the solid 
phase is then favored. This stabilizing effect can be expressed 
mathematically. In the case where the solid is superheated and 
the liquid supercooled, this is expressed by negative d2!^^/ 
dx2 \lJ=Xm, d2Ti3

sUs/dx2 \\=Xs and positive d2T°sii,/dx21^^ and 
d2T°siJ/dx2 \x^Xs. This temperature field property occurs when 
the temperature extrema are close to the phase boundaries. 
This effect gives a region of stability for long wavelength 
disturbances. 

The area of the interface is increased for smaller 
wavelengths. The heat transfer between the solid protrusion 
and the neighboring supercooled melt is enhanced for these 
shorter disturbance wavelengths. This effect promotes growth 
of the solid protrusion. Likewise, heat transfer is enhanced for 
a liquid penetration into the superheated solid. This heat 
transfer promotes further growth of the liquid penetration. 
Therefore, there exists a region of instability. Curvature ef-
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fects of the phase boundary tend to stabilize the growth of 
these protuberances. This effect is expressed by the 
Gibbs-Thomson boundary condition. The Gibbs-Thomson 
effect attenutates the growth of the smaller wavelength distur
bances. There is a region of intermediate wavelengths between 
the small and long wavelengths where phase boundary in
stability occurs. Figure 5 illustrates a case where the basic-state 
temperature field drives the growth of intermediate 
wavelengths. 

Figure 6 shows the neutral stability curve (a = 0) for a scan 
rate V = 5 mm/s, holding r fixed. The adjustable parameter 
Q0 is varied. As Q0 is increased, more heat is incident on the 
silicon layer and the system is stabilized. The onset of in
stabilities occurs when both the real and the imaginary parts of 
a are equal to zero. The occurrence of complex roots along the 
neutral stability curve indicates an oscillatory type behavior in 
time. This mode appears in the form of a traveling wave along 
the phase interface, when the observer is referenced to the 
moving laser beam. For the cases studied in this paper, the 
possibility of complex roots may occur for power densities and 

scan rates much higher than the range of the parameters 
examined. 

The fastest growing wavelengths can be identified from the 
stability maps. Wavelengths near these values are believed to 
be related to the initial spacing of the interface disturbances. 
This analysis predicts wavelengths in the range of 5 to 10 fim. 
Experiments concurrent with this analysis show disturbances 
in this wavelength range. However, it must be recognized that 
the evolution of the interface instabilities for long times is a 
fundamentally nonlinear phenomenon, that cannot be treated 
within the framework of a linear (i.e., small amplitude) stabili
ty analysis. 

4 Conclusions 
A conductive heat transfer stability analysis, applied to the 

laser-induced melting and recrystallization of thin silicon 
films, has been presented. Basic-state temperature fields both 
in the silicon layer and in the glass substrate were obtained. 
The stability of these calculated temperature fields was in
vestigated by using linear perturbation analysis. Unstable 
basic-state temperature fields were predicted. It was shown 
that the Gibbs-Thomson boundary condition tends to 
stabilize temperature disturbances at the solidification inter
face. On the contrary, the reflectivity increase upon melting 
enhances instability. The most dangerous wavenumbers for 
these unstable basic-state temperature distributions were ob
tained. These wavenumbers correlate with the finite amplitude 
crystal imperfections that have been measured. 
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A P P E N D I X 
Material Properties Used in the Calculations 

The .silicon material properties were taken at the melting 
point (Yaws et al., 1981; Touloukian and Makita, 1970). The 
value of the capillary constant is the same as the one used by 
Jackson and Kurtze (1985). 

(a) Silicon 
Thermal conductivity, solid 
Thermal conductivity, liquid 
Thermal diffusivity, 
Thermal diffusivity, 
Heat capacity 
Density 
Melting temperature 
Latent heat 
Refectivity, solid 
Reflectivity, liquid 
Capillary constant 

solid 
liquid 

"s i ,s ' 
Ksij -• 
asi,s ' 

(*si,l: 

V 
Psi-
T --
1 m L-
Rs-
Rr 
T-

= 22 W/mK 
= 67 W/m/K 
= 0.96 x l O " 5 m2/s 
= 2 .64xl0~ 5 m2/s 
= 1 J/g/K 
= 2.533xlO6 g/m3 

= 1412°C 
= 1106 J/g 
= 0.3 
= 0.7 
= 0.3x 10~9 m 

(b) Si02 

Thermal conductivity ^ = 1.3 W/m/K 
Thermal diffusivity ag/=l0~6 m2/s 
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Analytical Solution of Transient 
Response of Gas-to-Gas Parallel 
and Counterflow Heat Exchangers 
This paper shows how the transient response of gas-to-gas parallel and counterflow 
heat exchangers may be calculated by an analytical method. Making the usual 
idealizations for analysis of dynamic responses of heat exchangers, the problem of 
finding the temperature distributions of both fluids and the separating wall as well 
as the outlet temperatures of fluids is reduced to the solution of an integral equation. 
This equation contains an unknown function depending on two independent 
variables, space and time. The solution is found by using the method of successive 
approximations, the Laplace transform method, and special functions defined in 
this paper. 

Introduction 

In industrial installations, heat exchangers usually occur in 
continuous processes that, most of the time, operate at steady 
state. However, nonsteady operations also occur and they are 
of considerable practical interest. Any change, intentional or 
accidental, in the steady-state processes can cause a perturba
tion in system that can have important consequences. In these 
cases it is important to know the dynamic behavior of heat ex
changers, in order to choose the most suitable design, control, 
and operation. 

The intention of this paper is not to review the large number 
of preceding reports on the same subject that have led to the 
conclusions given by Kays and London (1984), but rather to 
present how transient temperatures in gas-to-gas parallel and 
counterflow heat exchangers may be calculated by analytical 
methods. 

Nevertheless, some recently published papers dealing with 
similar problems should be mentioned here. Romie (1984) 
presented the outlet fluid temperature responses for a unit step 
increase in the inlet temperature of either of the fluids in a 
counterflow heat exchanger. The responses are found using a 
finite difference method and are represented by simple em
pirical equations. These solutions include the effect of the core 
thermal capacitance and are not restricted to the gas-to-gas 
heat exchanger, but are approximative. An exact analytical 
solution for the transient parallel flow heat exchanger for unit 
step increase in the inlet temperature of either of the fluids is 
presented by Romie (1985). This solution also includes the ef
fect of core thermal capacitance but is restricted to the ex
changers in which the two fluid velocities are equal or to ex
changers in which both fluids are gases. Liapis and McAvoy 
(1981) defined the way in which analytical solutions for the 
transient behavior of a class of countercurrent heat and mass 
transfer systems can be obtained. Their solutions take into ac
count flow forcing as well as the dependence of transfer coef
ficient on the velocities of flow streams but do not include the 
effect of core thermal capacitance. Li (1986) presented exact 
transient solutions of parallel flow heat exchanger in which the 
thermal capacitance of the core is negligible compared to the 
fluids contained in the exchanger. These solutions are valid for 
a finite or an infinite flow forcing. 

In this work, analytical solutions to the energy equations 
governing convective heat transfer between a heat exchanger 
core, which is initially at an arbitrary temperature distribu
tion, and a steady flow of fluids entering the exchanger at con-

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division September 
10, 1986. 

stant mass velocities with arbitrary time varying temperatures 
are presented. Solutions are restricted to the case when ther
mal capacities of the masses of two fluids contained in the ex
changer are negligibly small relative to the thermal capacity of 
the heat exchanger core. They are found by using the method 
of successive approximations and the Laplace transform 
method, which leads to an extensive use of special functions 
defined in this paper. 

As high-speed computing machines become more and more 
available to design engineers, the presented method for solving 
the addressed problem, hitherto of somewhat academic in
terest, will undoubtedly be found extremely useful. 

Mathematical Formulation 

On the basis of standard assumptions (Kays and London, 
1984; Romie, 1983), one obtains three simultaneous partial 
differential equations in the coordinate system as shown in 
Fig. 1. If all quantities referring to the weaker fluid (Wmia) 
flowing in the X direction are denoted with the subscript 1 and 
those referring to the stronger fluid (Wmm) flowing in the X 
direction for parallel flow or the -X direction for 
counterflow with the subscript 2 (Fig. 1), then the fluid 
temperatures 7\ (X, i) and T2 (X, t) and the separating wall 
temperature Tw (X, f) of the heat exchanger are governed by 
the following equations: 

dt 
(hA)1(Tl-Tw)-(hA)2(.Tw-T2) 

• dT, 
miCplL-^r=(hA)l(Tw-Tl) 

±m2cp2L 
dT2 

dX 
(hA)2(T„-T2) 

(1) 

(2) 

(3) 

In equation (3) and later, the upper part of the double sign is 
for the case of parallel flow and the lower part for the case of 
counterflow. 

The space and time-independent variables, X and r, range 
from 0 to the heat exchanger length L, and from 0 to oo, 
respectively. 

In order to define dimensionless temperatures, it is ap
propriate to choose a reference temperature Tr and a 
characteristic temperature difference ATr, so that 

T,{X, t)-Tr 
8i(X,t) = - ATr 

U= 1, 2, w) (4) 
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h , , A , 

• 2 T j , * , 

Fig. 1 Schematic description of parallel and counterllow heat 
exchangers 

Introducing both the dimensionless distance and the dimen-
sionless time 

X . „ . . t 
x = NTU: z~-

and using the relations given by 

NTU = -
{hA)x{hA)2 1 

{hA)l+(hA)2 Wx 

(hA)i+(hA)2 

EL 
W-, 

(5) 

(6) 

(7) 

K, 
(hA)y 

{HA)1+(hA)2 

equations (1), (2), and (3) can now be written as follows: 

3 0 . 

dz 
• + dw=Klel+K202 

K, 
36», 

~dx 

K, dd2 

(8) 

(9) 

(10) 

(11) 
OJ dx w A 

The inlet and initial conditions for equations (9), (10), and 
(11) are 

0 i ( O , « ) = 0 , U ) 

62{0,z)=<t>2(z) 

e2(NT\J,z)=Mz) 

ew(x,o)=i,w(X) 

for parallel flow 

for counterflow 
(12) 

Equations (12) represent arbitrary temperature distributions 
of the separating wall and arbitrary time varying inlet fluid 
temperatures. 

It should be stressed that this model is valid if thermal 
capacities of the masses of the two fluids contained in the ex
changer core are negligibly small relative to the thermal 
capacity of the core itself. The ratios of the thermal 
capacitance of the fluids contained in the exchanger to the 

N o m e n c l a t u r e 

A = 

A,,A2 = 

a, b = 

c„, = 

d 
F 

f,g = 

H, n, m, k 

h = 

matrix element, 
equation (34) 
total heat transfer 
area on side 1 and 
side 2, respectively, 
m2 

functions, equa
tions (25) and (26), 
respectively 
parameter = w/Kx 

specific heat at 
constant pressure, 
J/(kg-K) 
specific heat of 
core material, 
J/(kg-K) 
parameter = \/K2 

function defined in 
equations (21) and 
(23) 
special function 
defined in the 
Appendix 
functions defined 
in equations (28), 
(29), and (30) 
special function 
defined in the 
Appendix 
heat transfer coef
ficient between 
fluid and the wall, 
W/(K-m2) 

In, m
 = special function 

defined in the 
Appendix 

K\ > K2 = parameters, equa
tions (8) 

L = heat exchanger 
length, m 

M„ = mass of exchanger 
core, kg 

m = mass flow rate, 
kg/s 

NTU = number of transfer 
units, equation (6) 

(") = binomial coeffi
cient = 
«!//•!(«-/•)! 

p, s = Laplace transform 
variable 

T = temperature, K 
t = time, s 

t* = parameter, equa
tion (7), s 

u, v = dummy variables 
W = thermal capacity 

rate = m cp, W/K 
X = distance from fluid 

1 entrance, m 
x, z = dimensionless in

dependent 
variables, equation 
(5) 

Subscripts 

$ = 

1 = 
2 = 
w = 

/, j , k, m, n, r = 

parameter 
dimensionless 
temperature, de
fined in equation 
(4) 
inlet temperature 
distribution, de
fined in equation 
(12) 
initial temperature 
distribution of the 
separating wall, 
defined in equation 
(12) 
thermal capacity 
rate ratio, equation 
(6) 

refers to fluid 1 
refers to fluid 2 
refers to the wall 
integers 

Superscripts 

at the inlet 
at the outlet 
Laplace transform 
with respect to the 
variable x 
Laplace transform 
with respect to the 
variable z 
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thermal capacitance of the exchanger core are very small if the 
fluids are gases. The smallness of the capacity ratios means 
that the fluid transit or dwell times are small compared to the 
duration of the transient (Romie, 1984). 

A general solution to this problem is developed in the 
following section. 

General Solution 

Since equations (9), (10), and (11) are linear in 0, {x, z), 8„ 
(x, z), and 62 {x, z), they can be solved by using the Laplace 
transform with respect to variable z~p. This procedure yields 

- Kl61+K262 + ^w 

P+l 

K, 
dx + 0,=< 

K, d02 - . 

dx 

(13) 

(14) 

(15) 

Applying the convolution theorem on equation (13), one 
obtains 

dw(x,z)=\pw(x)e*P(-z) 

+ Kt di(x, v)exp[-(z-v)]dv 

+ K2\ 62(x, v)exp[-(z-v)]dv 
Jo 

(16) 

and after integrating equations (14) and (15) with respect to x, 
satisfying equations (12), one finds 

01(x,z) = < M z ) e x p ( ~ - ^ - ) 

+ lH%» ("'* )eXp(--^> (17) 

For parallel flow 

( ux \ 

— K ~ ) 

+—\oew(u, z)ap[——\du (is) 

For counterflow 

62(x, z ) = * 2 ( z ) e x p ^ -
CO(NTU-A:) 

] 
co rN i U r w(u-x)~\ 

+ — \x 6w(u,z)exp[ — J du (19) 

The substitution of equations (17) and (18) for parallel flow 
and equations (17) and (19) for counterflow into equation (16) 
gives the following integral equations: 

For parallel flow 

6w(x,z)=F(x,z) 

K, n r* / x-u \ 
+ ~I2-\o\0

e^U'V)eX<-^2-) 
• exp[-(z — v)]dudv 

<»K2 p r „ , s r w(*-«n 
•exp[- (z — v)]du dv (20) 

where 

F(x,z)=^w(x)exp(-z) 

+ Klexp(-^-)\jg *,(i>)exp[-(z-i;)]di; 

+ ^ 2 e x p ( — ^ - ) j * <t>2(v)exp[-(z-v))dv (21) 

For counterflow 

9w(x,z)=F(x,z) 

* i 
+ -K2 \l\?»iu'v)exp(-^Kr) 

• exp[-(z — v)]dudv 

wK-,. r rNTU „ , r «>(«-*) uK2 n rNTU
 n , N T 

KI 

• exp[-(z— v)]dudv (22) 

where 

F(x,z)=i'w(x)exp(-z) 

+ K{expy—•£-) \ $i(v)exp[-(z-v)]dv 

r co(NTU-x)! [* , , r , 
+ K2exp[ K— - J ] o $2(.v)exp[-(z-v)]dv 

(23) 

From equations (21) and (23), one can see that the function 
F(x, z) is expressible by 

F(x,z)= Y!iakMbk(z) 
k=\ 

where 

a2(x)=Klexp{-—-) 

( wX \ 
a^x) =K2txpI ——1 for parallel flow 

V A i / 

(24) 

«3 

and 

(x) =K2exp y — J for counterflow 

(25) 

bl{z)=exp(-z) 

b^z) = Jo $i(v)exp[-(.z-v)]dv 

bi(z) = j $2(v)exp[-(z-v)]dv 

(26) 

It is interesting to note that only the function a{ (x) depends 
on initial condition while the functions b2(z) and ft3(z) depend 
on inlet conditions. Function a3(x) depends on flow arrange
ment (parallel or counterflow). 

The known function F(x, z) suggests that the unknown 
function 6W (x, z) can be represented as 

oo 3 

HE 
n=0 *=1 

6w(X,Z)= £ Efn,k(x)g„tk(z) (27) 

where the functions fnk(x) andg„k(z) depend only o n x a n d 
z, respectively. 

Substitution of equation (27) into equation (20) (for parallel 
flow) or into equation (22) (for counterflow) and application 
of the successive approximation method to solve integral 
equations gives the following integral recursion formulas: 
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For parallel flo w 

hk(x)=akix) 
K\ f* , / x-u \ 

+^r]o/-^(")ex4—*—J 

/ , 
v 2 

0)A; 

M 

For counterflow 

fo,k(x)=ak(x) 

du 

du (28) 

/ , , , « ( • * ) = K2 

01K 

fn - 1 ,k ( «)exp(^ —Jcfa 
0 

NTU 

du 

and (for both arrangements) 

8o,k(z)=bk(z) 

g„,k(z) = \0 g„-i,k(v)exP[-(z-v)]dv 

(29) 

(30) 

Numerical values of the space-variable functions fnk (x) (k 
= 1, 2, 3 and n = 0, 1, 2, 3, . . . ) are universal for all inlet 
conditions and depend only on the initial condition, indepen
dent heat exchanger parameters (NTU, o>, and Kx), and flow 
arrangement (parallel or counterflow). However, the time-
variable functions g,hk(z) are universal for both flow ar
rangements and depend only on inlet conditions. 

Taking the Laplace transform of equations (26) and (30) 
with respect to the variable z using p as the transform 
parameter, one obtains 

by = 
1 

p+l 

and 

52 = *, 

(k= 1,2,3) 

p+l 

1 

(3D 

P + l 
(n= l ,2 ,3 , . . . ) 

(32) 

An explicit formula for the unknown function g,hk(z) can 
now be found using the last two equations as follows: 

^ U ) = V 4 T ^ V J (33) h 
(p+iy 

A procedure similar to that used to find the unknown func
tions g„yk(z) can be used to find explicit formulas for the 
functions f„k(x). That means, taking the Laplace transform 
of equation (28) for parallel flow, and equation (29) for 
counterflow, with respect to the variable x using s as the 
transform parameter, and using the method of successive 
substitution of functions f„-itk(x) (n = 1, 2, 3, . . . ), one 
obtains formulas for finding the unknown functions f,hk(x). 

For concise notation of explicit formulas, the matrix 
elements 

A„,r=(n
r)(dKiy-r(cK2 

n = 0, 1,2,. 
(34) 

and parameters c = w/K{ and d = 1/K2 are introduced. 

For the case OJ = 0 (applies to exchangers of all configura
tions), one can find 

For parallel flow if u > 0 and c = d 

and if co > 0 and c T± d 

f„,k(x)-^A„.rL7Jx{ is+d)n-r{s+cy\ 

(35) 

(36) 

(37) 

For counterflow 

f„ * (*) = E (- VrA„ Xr ' [ ^ 1 
' ~0 ' xl(s+d)"-r(s+cyl 

n n — i 

+ E//,*(°) E (" WAn_hrI„_^rir,x{x, d,c + d) (38) 
1=1 r = 0 

where 

., rak(s + c) 
/u(0) = A2cL-JNTup^] 

/ n , (0)^ 2 cE(- i )M„_ 1 ,A- j N T u[^ + 1 ; ; ( ; +
+ ; ;„_ r „ 1 j 

n-l n-i-l 

+ *2cE/u(°) E (-lYA„_,_lir 
1=1 r = 0 

In-.i-r..Ur+2(mV,c + d,c + d) (n = 2 , 3 , 4 , . . . ) (39) 

Explicit relations for the function /„„, (x, c, d) appearing in 
equations (38) and (39) are given in the Appendix. 

The functions fnk(x) can also be calculated by integration 
of integral equations (28) and (29) using, for example, the 
trapezoidal rule. The functions f„-\ik(x) are evaluated at 
distinct values xm (m = 0, 1, 2, . . . , M) of x on the range 0 
< x < NTU, that is, at distinct x,„ = m-Ax from the fluid 1 
entrance (Ax = NTU/M = step length). 

That means that the values of the functions fnk(x) may be 
calculated in two ways. The first way is to apply numerical in
tegration of the recursion integral relations (28) and (29) and 
the second one is to apply explicit formulas for the functions 
fn,k(x) (equations (35), (36), (37), or (38)). Some aspects of 
applying both calculation methods of the functions f,uk (x) 
can be explained on the example of step change of inlet 
temperature of fluid 1 for counterflow heat exchanger having 
NTU = l , w = 1, and Kx = 0.5. In this case, only the func
tions /„ i 2 (x) shall be calculated as /„_, (x) = 0 because of 
\j/w (x) = 0 while the function/„?3 (x) need not be calculated as 
gn,3 (z) = 0 because of $2 (z) = 0. If only outlet fluid 
temperatures are to be determined, only/„2(0) and/„ 2(NTU) 
shall be known. When the first calculation method is applied, 
functions/„_ 12 (x) shall be calculated in 70 collocation points 
to obtain accuracy for the calculation of these functions to 
four significant figures. Calculating function g„ |2(£) with the 
above accuracy, too, and wanting to obtain the outlet 
temperatures with the same accuracy, the products g„ 2 (z) • 
/«+1,2 (*) (x = 0 or NTU) shall be added up to n = 10 for z = 
5; n = 14 for z = 10; n = 16 for z = 15; and n = 17 for z = 
20. The numerical integration has been performed resorting to 
an algorithm based on a trapezoidal rule and this procedure is 
very simple for use and can be easily programmed and quickly 
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done on a digital computer. The practical application of ex
plicit analytical formulas is a little complicated. In the same 
example as mentioned above, the number of required func
tions f„y2(x) (x = 0 or NTU) is unchanged for the same ac
curacy of outlet temperatures, but the time period required for 
their computation is longer compared to the numerical 
method. The relation between the time periods required to 
calculate the functions f„jk(x) by use of the first/second 
method depends on the values of NTU, u>, and K\ parameters 
as well as the flow arrangement and, of course, on the com
puter programs themselves. However, numerical aspects are 
not the subject of this paper and, therefore, they will not be 
discussed in more detail. 

Similar analyses can also be carried out for other values of 
NTU, co, and Kx parameters as well as for the two different 
flow arrangements and various initial and inlet conditions. 
For the case when initial and inlet conditions are more com
plex, the functions /„_, (x), /„_3 (x), gnA (z), and g„,3(z) shall 
also be calculated. However, there are no considerable dif
ferences in the calculation procedure or the number of func
tions required to calculate outlet temperatures of a given 
accuracy. 

It should be emphasized that all functions fnk(x) and 
g„tk(z) are always less than or equal to one and that they are 
always positive or equal to zero which simplifies the analysis 
of calculation accuracy as well as the analysis of the influence 
of either initial or inlet conditions to the final calculation 
result. For example, the function/„, (x) practically represents 
the influence of initial condition to the outlet fluid 
temperatures and the heat exchanger core which means that, 
taking the linearity of the subject mathematical formulation 
into account, an independent analysis of individual influences 
can also be carried out. 

As the functions f„ik(x) and g„tk(z) are now known, the 
temperature distribution of the separating wall can be 
calculated by using equation (27) while temperature distribu
tions of both fluids can be calculated by substituting the above 
functions in equations (17) and (18) or (19). This procedure 
gives 

8l(x,z)=$l(z)exp(-dx) 

+ dH H S„,k(z)\ f„ik(u)exp[-d{x-u)]du (40) 

and 

For parallel flo w 

62(x, z) = * 2 (z)exp(- ex) 

3 

+ C L JjS„,k(z) \ f„tk(u)exp[-c(x-u)]du (41) 
n = 0 k=l 

For counter/low 

62{,x, z) = *2(z)exp[ - c(NTU - * ) ] 

+ C E TiS„,k(z) 
« = 0 *r= l 

The outlet fluid temperatures are 

6{'= 0,(NTU, z) 

f„k(u)exp[~c(u-x)]du (42) 

d2 (NTU, z) 

2 (0 , Z) 

(43) 
for parallel flow 

for counterflow 

It is not difficult to show that the following relations are 
valid for both arrangements: 

Klel(x,z)+K2e2(x,z)=$1(z)a2(x) 

oo 3 

+ $ 2 ( z ) a 3 « + ]j I ]g„,*(z) /„ + ,,tW 
n = 0 * = 1 

3 

= E H Sn-l,k(Z)f„,k(x) 

where 

M)-
dbk(z) 

dz 

(44) 

(45) 

These relations are very suitable for the calculation of outlet 
temperatures in the counterflow heat exchanger because in
tegral calculations in equations (40) and (42) are not required. 

Calculation Results 

The main purpose of this paper is to provide an analytical 
solution by which performances of the parallel and 
counterflow heat exchangers can be evaluated and compared. 
Because of the many parameters involved in the temperature 
distributions of fluids and separating walls, it is virtually im
possible to present the quantitative influence of all of these 
parameters here. However, there is enough space in this paper 
to give one particular result showing the main characteristics 
of the solutions. 

For the case of arbitrary and constant initial temperature of 
the separating wall and for inlet conditions given by exponen
tial functions, i.e., 

0,(0, z) = * , ( * ) : 
l - ( l - / 3 ) e x p ( - - y , z ) f o r z > 0 

(3 f o r z < 0 

M * , 0 ) =(3 

02 (0, z) 

02 (NTU, z) 
= *2(z) 

fiexp(-y2z) for z > 0 

0 f o r z < 0 

equations (25) and (26) are reduced to 

0fl,(Jf)=j8 

a2(x) =Kxexp(-dx) 

a3(x) —K2exp(-cx) for parallel flow 

(46) 

a3(x)=K2exp[-c(NTU-x)] for counterflow 

(47) 

6 , ( z ) = e x p ( - z ) 

b2(z) = 

1 - exp( - z) Step change (7, — 00) 

1 -0 
l - e x p ( - z ) -

1 - 7 | 

1 - e x p ( - z ) - ( 1 - /3)zexp(-z) 

[exp( - -y ,z ) -exp( -z ) ] ( 7 i ^ l ) 

(7I = 1) 
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bib) • 
1 - 7 2 

Step change 

[ e x p ( - 7 2 z ) - e x p ( - z ) ] 

jSzexp(-z) 

It should be pointed out that for the 7, — 00 and y2 — 00 
functions, <bx(z) — 1 and $2(z) — °, which corresponds to a 
step change of inlet fluid temperatures. 

In order to determine outlet fluid temperatures of a parallel 
flow heat exchanger, equations (40) and (41) are used with x = 
NTU while outlet temperatures of counterflow heat exchanger 
are determined by equations (40) and (42) with x = NTU and 
x = 0, respectively. In that way, the following equations for 
outlet fluid temperatures are obtained 

0,"=$,(z)exp('-G?NTU) 

+ < * £ £s ,aU) ' ' „ ,* (NTU) 

02"=*2(z)exp(-cNTU) 

(49) 

(50) 

-CL E^.*(«)y».*(NTU) 

where the integrals in equations (40), (41), and (42) are as 
follows: 

(•NTU 

r ' , a (NTU)=] o fnJ[{u)exp[-d(tmJ-u)]du ^ 

(•NTU 

j„,k(NTU) = J Q f,hk (u) exp [ - c(NTU -u)\du 

for parallel flow 
(•NTU 

i , a ( N T U ) = J f„,kWexx>(-cu)du 

for counterflow 

Taking the Laplace transform of equations (48), 
substituting these results into equation (33), and finding the 
inverse Laplace transform (see Appendix), exact formulas for 
functions g„ik(z) {n = 1, 2, 3, . . . ) can be obtained in the 
following way: 

Sl,,i(z)=F„+l(z, 1) 

W i f e . 1. l) = l - I > / + i ( * > 1) 

8„Az) = 

(51) 
S„,2{Z)= -j ( 7 i - ° ° ) 

W i f e , 1, l ) - d - i S ) / „ + , , , ( « , 1, l - 7 i » 

(0<7,<oo) 

0 (72^°°) 

./3/„+1,,fe, 1, I -72 ) ( 0 < 7 2 < ~ ) 

Exact formulas for the calculation of the functions ilhk 

(NTU) and j , h k (NTU) are obtained either by direct Laplace 
transform of equations (50) or by applying relations (A7), 
(A8), and (A9). This means that for the known functions 
ak(x) included in equations (47), the functions fn>k(x) have 
already been determined by use of the relevant equations 
(35)-(39). 

For the functions i„k (NTU) andy',,^ (NTU), all calculation 
results are given in Table 1. The special functions F„(x, c), 
Inj„ (x, c, d), and Hnmk (x, c, d) appearing in Table 1 are 
given in the Appendix. 

(72-* °°) 

(72*1) 

(72 = 1) (48) 

Fig. 2 Inlet and outlet temperatures for parallel, cross, and 
counterflow heat exchangers versus dimensionless time z: NTU = 4, w 
= 0.5, K1 = 0.25, /3 = 0.75, Y 1 = 2, and y2 = 1 

For parallel flow, counterflow (results obtained in this 
paper), and crossflow heat exchangers with both fluids un
mixed (Gvozdenac, 1986), outlet temperature (Jfand 02' versus 
dimensionless time z are shown in Fig. 2. 

Concluding Remarks 

A method that provides analytical solutions to the transient 
response of gas-to-gas parallel and counterflow heat ex
changers has been presented. The solution technique given in 
this paper allows for simultaneous and arbitrary forcing at 
both ends of the system. 

A significant feature of the work presented is the approach 
which was taken to solve the integral equations (20) and (22). 
This solution procedure provides the necessary basis for the 
study of parameter estimation, model discrimination, and 
control of parallel and counterflow heat exchangers. 

On the basis of presented results, a check of outlet 
temperatures has been made for special cases with a unit step 
increase in the inlet temperature of either gas given by Romie 
(1984, 1985) and these have been found correct. 

Examination of these solutions reveals that they may be 
used effectively in practice for computer-aided design, con
trol, and operation procedures. 
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Table 1 Functions i„ik (NTU) and j„<k (NTU) 

o 
II 
3 

VI 
3 
V 
o 

Parallel flow 
J„,(NTU) = |3rf/n,(NTU) 
/„,2(NTU) = if'f fd"F„ + 2(NTU) d) 
/•„i3(NTU) = x V " '/„+ i,i(NTU, d, d) 

c = d 

/„|1(NTU)=y„,1(NTU) = ^n/„+1 ,1(NTU, d, d) 

/n|2(NTU)=7„,1(NTU) = Arlrf"JF„ + 2(NTU, d) 

/„,3(NTU)=y„,3(NTU) = - i - r„ ] 2(NTU) 
Kxd 

c&d 

n 

/„a(NTU) = 0£^„, r /7 r ,n_ r .M ,1(NTU, c, c-d) 
r = 0 

n 

i„a(NTU) = Kl D^„A„_ r+2(NTU, c, c-d) 
r=0 

n 

/„,3(NTU) = tf2 X>„,r/r+,,„_.„,(NTU, c, c-rf) 
r = 0 

n 

yn]1(NTU) = /3 L^„, r« r + i ,„- r , i (NTU, c, c -d) 
r = 0 

n 

i«,2(NTU) = ̂ , E ^ « A + i , „ - r + i ( N T U , c, c -d) 
r = 0 

n 

,/„,3(NTU) = tf2 I]^„, r/ r+2,«-.(NTU, c, c -d) 
r = 0 

Counterflow 
y„,(NTU) = 0 
7„,2(NTU) = 0 
y„i3(NTU) = 0 

/B,*(NTU) = -—-/ B + U (NTU) 
A j o 

(£=1,2,3) 

yB.*(NTU) = /„+1,*(NTU) 
c 

/,,,(0) = /3tf2c/M(NTU, c,c) 

n- 1 

/„,i(O) = 0tf2c£ ( - l M ^ ^ ^ ^ . ^ ^ ^ ^ N T U , c, -d) 
r = 0 

fl-1 /! —/—I 

+ ̂ E / / . i ( ° ) E (-D^^/-i,A-,- r-1 , r +2(NTU,c + d, 
/=1 r = 0 

f12(0) = KlK2cIUi(NTU, c + d, c + d) 

n-\ 

/„,2(0) = ̂ 1Jfr2cX;(-l)M„_1 , r/„_ r , r+ l(NTU,c + d ) c + d) 
r = 0 

n - 1 « — / - 1 

+ ^2cL/ ; ,2(0) E ( - l )^„ - / - l , , / n - / - , - l , , + 2(NTU,C + rf, 
(=1 r = 0 

/,,3(0) = /f|cF2(NTU, c) 

n - l 

/„,3(0) = Aricexp(-cNTU) £} (~ lM«-i,r^-r-i,r+2(NTU, c + d, c + 
r = 0 

n - l rt-/-l 

+ ̂ c j ] / , i 3 ( 0 ) D (-D^„-/- i , r /„- / - r- i , r +2(NTU, c + d, 
i = l r = 0 

/„,!(NTU) = /3 X) (" l)M„i,//„_ri),1(NTU> d, c + d) 
r = 0 

H n —/ 

+ D//,i(°) E (-l)r^n-;,A-/-r,r+i(NTU, d, c + d) 
(=1 r = 0 

n 

/„,2(NTU) = JfT1 £ ( - l)M ;v./„_ r+V(NTU, d, c + d) 
r = 0 

« /i —/ 

+ E//,2(°) E (-l)r^„-/,f/„-/-r,r+i(NTU, d, c + d) 
i = l r = 0 

H 

/„,3(NTU) = tf2exp(-cNTU) £ (- l)M„ i rV,, r + 1(NTU, d, c + d) 

r = 0 

n n~i 

+ E/;,3(°) E (" l)%,-/,A-;-r,r+.(NTU, d, c + d) 
i = l r=0 

c + d) 

c + d) 

SO 

c + d) 

A P P E N D I X Romie, F. E., 1983, "Transient Response of Gas-to-Gas Crossflow Heat Ex
changers with Neither Gas Mixed," ASME JOURNAL OF HEAT TRANSFER, Vol. 
105, pp. 563-570. 
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(0 F" ( x ' c ) =^=ljT e x p ( - c x )^-(7T^ 
( « = 1 , 2 , 3 , . . . ) 

Particular values are 

F,(0, c) = l 

F„(0, c) = 0 

F,(*, 0)=1 
^ - 1 

(Al) 

F„(x, 0) = 

(#1 = 2 , 3 , 4 , • • • ) 

(n = 2 , 3 , 4 , . . . ) 
( « - l ) l 

(«) /„,„,(*, c,eT)= D ( w + / - 1 ) r f ' F „ + „ , + / ( x , c ) 

(A2) 

=> 1 

(5+C-rf)m(5' + C)" 

Particular values are 

/o,„, (x, c,tf)=F„,(x, c-rf) 

/„i0(*, C, d)=Fn(x, c) 

IHim(0,c,d)=0 

(«, m = l , 2 , 3 , . . . ) (A3) 

(,H) ^fli(„,*U,c,rf)=f;('«+/-1) 
; = o v •/ ' 

d> 

*n + m+j,k (x, c, c) • 
1 

5*(i' + C-d/)'"(5' + c)n 

(n, w, k = 1, 2, 3, . . . ) 

Particular values are 

(A4) 

(A5) 

H0,m,k(x,c,d)=Imik(x, c-d, c-d) 
Hn,0,k(x, c> <i)=I

n,k(x> c> c ) 

H„,mfi(x, c, d)=Inm(x, c, d) 

HOAk(x,c,d)=Fk(x,0) 

Ho,m,o(x> c> d)=Fm(x, c-d) 

HnA0(x, c, d)=F„(x, c) 

H„imik(0,c,d)=0 (n,m,k=l,2,3, 

(iv) Integrals 

J F„(u, c)txp(8u)du 

(Fn+l(x, 0) 

/„,,(*, 2c, 2c) 

I„%1(x, c-d, c-d) 

I„A(x, c + d, c + d) 

n,m 

(w, c, d)exp(8u)du 

(S = c) 

(8=-c) 

(5 = d) 

(5=-d) 

7m,n+i(x. ~d, -d) (5 = c) 

H„,m,i(x, 1c, d) (5=-c) 

H„,mA(x, c-d, d) (8 = d) 

.Hn,m,i(x,c + d,d) (6=-d) 

j Hn,m,k(u, c, d)exp(8u)du 

(A6) 

(A7) 

(A8) 

^Hk,m,„-l(X, -C,d-C) 

E (-l)r(k + r - l)crHn,m,k+r+}(x, 2c, d) 

£ (k + r-1)drHn^k+r+l(.x,c-d,d) 

OO 

(fi = c) 

(8=-c) 

(S = d) 

( 8 = - d ) 

(A9) 
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Integral Equation Solution for 
Internal Flow Subjected to a 
Variable Heat Transfer Coefficient 
A solution methodology based on integral equations is presented for the problem of 
heat transfer to laminar duct flow subjected to an axial variation of the external heat 
transfer coefficient. The technique offers an efficient and accurate calculation pro
cedure which combines standard analytical methods with a simple numerical in
tegration. In order to examine the effect of external finning, results are calculated 
for the cases of a stepwise periodic and a harmonic variation of the heat transfer 
coefficient for both fully developed laminar flow and slug flow. The general pro
cedure is applicable to a wide class of problems in heat and mass transfer involving 
variable boundary condition parameters. 

Introduction 

Numerous engineering applications exist for convective heat 
transfer to internal flow where the external heat transfer coef
ficient varies along the axial direction. An important example 
is a duct fitted with an array of external fins. Since each fin in
creases the effective coefficient of heat exchange between the 
fin base and ambient, a duct fitted with an array of external 
fins can be modeled as an unfinned duct with periodically low 
and high values of the heat transfer coefficient, corresponding 
to unfinned and finned regions, respectively. 

Although a wealth of theoretical investigations concerning 
heat transfer to forced flow in ducts, heat conduction, and 
mass diffusion has appeared in the literature, almost all the ex
isting works have considered boundary conditions of specified 
temperature, specified heat flux, or convection with an exter
nal environment via a constant heat transfer coefficient. Only 
a few theoretical studies involving a variable boundary condi
tion parameter exist in the literature. This is perhaps due to the 
failure of standard analytical techniques for such problems 
and the demanding computational task required to implement 
purely numerical schemes in the presence of abruptly changing 
boundary conditions. 

Heat conduction with a time-dependent heat transfer coeffi
cient was considered by Ozisik and Murray [1], who used a 
variable eigenvalue technique, and by Thompson and Holy 
[2], who developed an approximate solution using integral 
equations. The only works available concerning heat transfer 
to forced flow in ducts subject to an axial variation in the ex
ternal heat transfer coefficient appear to be those of Sparrow 
and Charmchi [3] and Vick and Wells [4]. In [3], a finite dif
ference scheme was applied to the case of a stepwise periodic 
variation of the heat transfer coefficient. However, the 
discontinuous nature of the boundary condition made the 
computational task quite demanding and a complete 
parameter study was not feasible. In [4], an exact analytical 
scheme using a variable eigenvalue approach was developed 
where special consideration was required for each particular 
variation of the heat transfer coefficient. 

The purpose of the current investigation is to present a solu
tion methodology for the problem of forced convection with 
an axial variation of the heat transfer coefficient. The basic 
approach is to use the standard Green's function technique to 
obtain a singular Volterra integral equation of the second kind 
for the surface temperature, which can then be resolved 
numerically by any standard integration procedure such as the 
trapezoid rule. The proposed methodology provides an effi-

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division August 1, 
1986. 

cient and straightforward combination of analytical and 
numerical methods which can be applied to a wide range of 
problems involving variable boundary condition parameters 
occuring in heat and mass transfer. 

Formulation 

The present investigation is concerned with the following 
dimensionless equations: 

v(rj) dd 1 d / . dd \ 
— — (, '——)+S(i , , ?), 0 < i , < l , £>0 
T)' 01) V 01) / 3£ 

dO 

9TJ 
= 0, r, = 0 

dd 
- + H(Z)6 = 0, ij = l 

(la) 

Ob) 

(Ic) 

0 = 1 , { = 0 (Id) 

The various dimensionless quantities are defined as follows: 

V = r/r0, £=-
Pe 

Pe = -

0(a, £) 

2r0u 
v(v) = 

u(r) 

a u 

T(r,z)-TO0 

H(&y-
h(z)ra 

S ( r j , « = 
k(T0-T„) 

(2a) 

(2b) 

(2c) 

(2d) 

(2c) 

These equations describe the thermal entry region in a duct 
with steady, fully developed flow entering at constant 
temperature T0. The geometry is specified by 

10, parallel plates 

1, circular tube 

and a choice of fully developed velocity profile is included by 
specifying the form of the dimensionless velocity v(rf). Also a 
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source term S(r), £) is included, which accounts for heat 
generation and viscous dissipation. 

The primary interest with the system defined by equations 
(1) is the boundary condition at TJ = 1, which represents con
vection with an external environment through a variable heat 
transfer coefficient or Biot number, //(£). The variable 
boundary condition parameter allows for the modeling of a 
variety of situations of engineering interest, including the case 
of a duct with external fins. However, mathematical dif
ficulties arise since the variable Biot number renders the prob
lem nonseparable, and as a result a solution by any of the 
standard analytical techniques is not possible, except for the 
special case of a constant Biot number [5, 6]. In the following 
section, a straightforward and efficient solution methodology 
is proposed which is well suited to handle problems with 
variable boundary condition coefficients. 

Analysis 

The problem of interest, as described by equations (1), is 
now solved by employing the Green's function technique to 
convert the original problem into a singular Volterra integral 
equation of the second kind for the surface temperature. The 
resulting integral equation can then be numerically integrated 
by a suitable integration scheme. 

A Green's function is chosen which is governed by the 
following system of equations: 

u(iy) dG I d 

3« 

dG 

+ 5'( i j-*„)««-$o). 0 < i , < l , £>0 
dG „ 

- = 0, ij = 0 d-q 

dG 

G = 0, £<£ 0 

(3fl) 

Ob) 

(3c) 

(3d) 

where G = G(ij, £ lrj0, £0) is the Green's function or response 
function to a concentrated heat source released at location (r/0, 
£0). The arguments are written so as to emphasize their ef
fect/cause relationship. 

An important feature of this choice of the Green's function 
is that the boundary condition at ij = 1 is taken with a con
stant coefficient H0, which can be chosen for convenience. 
The solution to equations (3) is readily obtainable by the finite 
integral transform technique [6], as outlined in the Appendix. 
The delta function in the radial variable, 6'(?j —TJ0), has the 
normal interpretation for / = 0 (parallel plate), but is inter
preted as a cylindrical delta function for / = 1 (circular tube). 

Following the procedure given in Ozisik [6], the general 

solution to the system of equations (1) can be expressed in 
terms of the Green's function in the form 

flfo, $)= \ [H0-HU0)]G(r,, { II, $o)0(l, £0)rf£0 

v(vo) I + W " 2 Giv, S lijo, 0)dv0 (4) 

+ L „ „ ri^7!' £ ''Jo. £o)SO?0. £o)efy0d£0 
•1(0 = 0 J in=o 

The first integral represents the effect of the variable heat 
transfer coefficient, the second integral represents the effect of 
the inlet temperature, and the third integral is due to the 
source term. 

Since the surface temperature 0(1, £) is still unknown, equa
tion (4) is evaluated at rj = 1 to get 

Jt„=o 

where 

and 

/(0=j 

m £ o ) = [ t f o - ^ o ) ] G ( l , £ l l , S o ) 

, i - ^ G ( U I , 0 , 0 ) 4 
io = ° 2 

f P1 

(5) 

(6) 

(7) 

[ ( I J & G ( 1 , £ I I J 0 , £o)S(i?o. £o)dvod£0 

Equation (5) is a Volterra integral equation of the second 
kind for the surface temperature which can be resolved using a 
suitable integration technique. A numerical difficulty that is 
inherent in equation (5) is the singularity of the kernel K(£, £0) 
when its arguments are equal, i.e., £0 = £. Since the Green's 
function is the response to a concentrated heat source, it 
becomes unbounded at the location of the concentrated 
source, thus giving rise to the singular kernel defined by equa
tion (6). The singularity can also be seen mathematically by ex
amining the Green's function G(l, £11, £0), given by equation 
(Al) in the Appendix. 

In order to alleviate this difficulty, the following singularity 
subtraction procedure is used to rewrite equation (5) as 

M) ~-

g(r, z) --
G(v> £ '-*7o» £o) = 

h{z) --

Hit) --
k --

m, to) = 
Pe = 

Qtt) = 
r -

= function defined by 
equation (7) 

= energy source 
= Green's function 
= heat transfer 

coefficient 
= Biot number 
= thermal 

conductivity 
= kernel 
= Peclet number 
= total heat transfer 
= radial variable 

r0 

S(.v, t) 

T(r, z) 
Tm 

T0 

«W 
u 

v(v) 

z 

= tube radius 
= dimensionless 

energy source 
= temperature 
= environment 

temperature 
= inlet temperature 
= velocity profile 
= average velocity 
= dimensionless 

velocity 
= axial variable 

a. 

V 

«fo, 0 

Ofttt) 

^m 

/* 
k 

*«(*) 

= thermal diffusivity 
= dimensionless radial 

variable 
= dimensionless 

temperature 
= dimensionless bulk 

temperature 
= eigenvalue 
= viscosity 
= dimensionless axial 

variable 
= eigenfunction 
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J { 0 = 0 

J' + \ ^ , W ! , W - W , « o (8) 

where A£ is the axial step size used in the numerical integra
tion. Equation (8) is now in a form suitable for direct 
numerical integration. The integrand in the first integral con
tains all bounded values over the range of integration and 
therefore provides no difficulties. The integrand in the second 
integral vanishes at the upper limit of integration, successfully 
canceling the singular point of the kernel. Although the kernel 
is singular, it is integrable and the third integral in equation (8) 
can be evaluated. In fact, this integral can be evaluated 
analytically for many variations of the convection coefficient. 
In the following section, numerical results are presented that 
were obtained by integrating equation (8) using the trapezoid 
rule with the integration beginning at the duct entrance and 
continuing downstream by increments of A£. 

Once values for the wall temperature are available, the bulk 
temperature can immediately be obtained from a numerical in
tegration of the following energy balance: 

J £ ' — 0 

+ 2'+ l [ f V'S(r/, £')dridS' 

(9) 

Another quantity of interest is the total heat transfer, which in 
the absence of energy sources (S = 0) is given by 

QG) = l - 0 6 t t ) (10) 

The quantity Q(£) represents the total energy transferred from 
the fluid at location £, divided by the total energy transferred 
as a condition of thermal saturation is reached at sufficiently 
large £. 

The solution is now complete with the wall temperature and 
bulk temperature available from equations (8) and (9), respec
tively. For the special case of H(£) = H0, the kernel defined 
by equation (6) becomes zero and equations (4), (5), and (8) 
reduce to the exact analytical solution. In the following sec
tion, some representative results are presented. 

Results and Discussion 

Equations (8) and (9) for the wall and bulk temperature are 
now used to generate numerical results. A circular tube (/ = 1) 
with no heat sources (S = 0) with either fully developed 
laminar flow or slug flow is considered. The dimensionless 
velocity profiles are 

v(n) = 
2(1-r;2), laminar flow (tube) 

1, slug flow 
(11) 

The influence of the velocity profile shows up directly in the 
eigenvalue problem, given by equations (A2) in the Appen
dix. The eigenfunctions generated from the eigenvalue prob
lem are used in turn to generate the Green's function, given by 
equation (Al). 

An important numerical consideration is the rate of con
vergence of the infinite series expression for the Green's func
tion, equation (Al), which is required for the kernel defined 
by equation (6). Clearly, the slowest convergence will occur 
for £ — £0 = A£, since the singularity subtraction employed in 
equation (8) alleviates the need to evaluate the Green's func
tion at its singular point, £ — £0 = 0. Also, the case of laminar 

H(£) 

Fig. 1 External heat transfer coefficient variations 

flow results in slightly slower convergence than slug flow since 
the eigenvalues do not grow as fast. The value chosen for H0 

does not play a significant role in the rate of convergence since 
it merely shifts the eigenvalues by a small amount. Results ob
tained on the computer indicate that the number of terms re
quired for convergence is proportional to (A£)~1/2 for the 
laminar flow case. Specifically, for the sum to converge to 
within 99.9 percent of its final value, about 200 terms are re
quired for A£ = 0.00001, 65 terms for A? = 0.0001, and for 
A£ = 0.001 only 20 terms are needed. 

For the results which follow, consideration is given to both 
a stepwise periodic and a harmonic variation of the Biot 
number, as depicted in Fig. 1. The stepwise periodic model 
was considered in [3, 4] and serves as a model for a tube with 
external fins with regions of low Biot number Hu corre
sponding to unfinned areas, and regions of high Biot number 
H2, corresponding to finned areas. The harmonic variation 
has a minimum value of H, but the maximum value has been 
adjusted such that the average value of //(£) over a cycle is the 
same for both variations. Although still somewhat arbitrary, 
this allows for a relevant comparison for heat transfer results 
using the two Biot number distributions. The harmonic varia
tion is expected to be closer to the actual Biot number ex
perienced by a duct fitted with fins since axial heat conduction 
in the walls tends to smooth out the abrupt changes between 
Hx and H2 • 

Numerical results were obtained using equations (8) and (9) 
by simply subdividing the integrals into regions of length A£ 
and then using the trapezoid rule in each subdivision. Starting 
from the duct inlet, the wall temperature can be calculated by 
marching downstream and obtaining values at each successive 
location. This procedure produced results which were in
distinguishable from those in [3, 4] for the bulk temperature in 
the stepwise periodic case. For the wall temperature in the 
periodic case and the harmonic case, no results appear to be 
available in the literature for comparison. If refined accuracy 
is desired, a higher order block-by-block method could be 
employed, at the expense of a more complicated computa
tional algorithm. 

The most critical numerical parameter is the axial step size 
A£, since it affects both the convergence of the Green's func
tion and the accuracy of the numerical integration. As the Biot 
number increases, A J must decrease in order to accommodate 
the rapidly changing wall temperature. Also, the step size must 
be small enough to pick up the effects of any variation in //(£), 
like the harmonic function shown in Fig. 1 (typically 10 to 15 
steps per cycle). 

Figures 2 and 3 display the wall and bulk temperatures for 
both the stepwise and harmonic variations of the Biot number. 
The results are for fully developed laminar flow in a tube. 
Figure 2 displays results for the first few cycles with / / , = 1, 
(•! = 0.003, and H2 = 50, £2 = 0.001, which gives an average 
Biot number of Ha„ = 13.25. Each set of results in Fig. 2 took 
approximately 15 s on an IBM 3090 using an axial step size of 
A£ = 0.0001. 
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Fig. 3 Comparison of wall and bulk temperatures for stepwise and har
monic variation of the external convection coefficient for fully 
developed laminar flow in a tube 

Fig. 5 Total heat transfer results, showing the effect of velocity profile 
and convection coefficient 

The wall temperature for the stepwise periodic case drops 
sharply in regions of high H and then rises sharply in regions 
of low H. In this case, the value Hx = 1 is low enough so as to 
cause an insulating effect. For the harmonic case, the wall 
temperature rises and falls more gradually, as would be ex
pected from a gradually changing convection coefficient. The 
occurrence of the minimum and maximum values of the wall 
temperature, however, lags the occurrence of the minimum 
and maximum values of the Biot number. Although the wall 
temperature settles into a repetitive pattern, the magnitude is 
steadily dropping in each successive cycle as the fluid ap
proaches the dimensionless ambient temperature of zero. 

Consistent with basic energy considerations, the bulk 
temperatures shown in Fig. 2 decline continually. The stepwise 
periodic case shows a small drop in regions of low H and a 
larger drop in regions of high H. The most severe drops occur 
at the beginning of a high Biot number region, since the wall 
temperature has just risen to its greatest value during the cycle. 
The bulk temperature curve for the harmonic case drops in a 
more steady fashion in response to the more gradual changes 
in Biot number. Although the average Biot number is identical 
for both cases, the bulk temperature is lower in the harmonic 
case, indicating a greater amount of heat removed from the 
fluid. As a result, the effect of smoothing the heat transfer 
coefficient by axial conduction in the tube wall is expected to 
be advantageous for heat exchanger applications where exter
nal fins are required. 

Figure 3 shows results similar to those of Fig. 2 except the 
value of H2 has been lowered to 5, giving an average value of 
Hav = 2. The wall temperatures have the same characteristics 

as in Fig. 2, except that the magnitudes are higher due to a 
decrease in heat transfer. In this case, however, the bulk 
temperatures for the two variations are nearly identical, with 
the harmonic distribution still slightly lower. Thus the precise 
distribution of the heat transfer coefficient is more important 
in calculating heat transfer when a relatively large degree of 
enhancement (large H2) or very effective fins are used. 

In Figs. 4 and 5 the total heat transfer, which is defined by 
equation (10), is examined. The total heat transfer is a mean
ingful way to display the advantages of heat transfer enhance
ment due to finning. Figure 4 shows the effect of the assumed 
variation of the Biot number on the total heat transfer for ful
ly developed laminar flow. Displayed along with the stepwise 
and harmonic variations is the constant case with H(£) = Hi 

= 1, which represents a tube with no heat transfer enhance
ment. On the log scale used in Fig. 4, the abrupt changes 
caused by the stepwise periodic variation in the Biot number 
are clearly shown. The overall enhancement of the total heat 
transfer over the case of constant Biot number is quite signifi
cant for both the assumed distributions with the harmonic 
variation more effective. Thus, for heat exchange equipment 
where precise performance calculations or optimization is 
critical, an analysis coupling the fluid with the conduction in 
the wall and fin could be warranted. 

Figure 5 shows the influence of the assumed velocity profile. 
The fully developed laminar and slug flow profiles give 
qualitatively similar results, but the total heat transfer with 
slug flow is greater due to the decreased internal resistance in
duced by greater velocity near the wall. The slug flow results 
are expected to be more representative of a turbulent flow due 
to the greater heat transport near the wall. 
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Summary and Conclusions 

The purpose of this investigation is to propose a solution 
methodology and present results for the problem of fully 
developed internal flow subject to an axial variation of the 
heat transfer coefficient. This seemingly simple generalization 
to include a variable boundary condition parameter adds sur
prising complexity over the case of a constant coefficient since 
standard analytical schemes fail and purely numerical schemes 
can require excessive computer time to accommodate abruptly 
changing boundary conditions. The present solution offers an 
alternative using Green's functions to derive a singular 
Volterra integral equation of the second kind for the wall 
temperature, which is then integrated numerically with the aid 
of singularity subtraction. Although higher order integration 
schemes may be employed, a simple trapezoidal rule produces 
accurate results with very reasonable computer time. 

Results are presented for both a stepwise periodic and a har
monic variation of the Biot number using both fully developed 
laminar flow and slug flow. With equal average Biot numbers 
over a cycle, the harmonic distribution gave a greater heat 
transfer rate. The difference in heat transfer predictions using 
the different Biot number models is significant for relatively 
large changes in Biot number (H2/Hx large) while for rela
tively small changes in Biot number over a cycle, the specific 
variation is unimportant as long as the average value remains 
constant. In all cases, the wall temperature is very sensitive to 
the Biot number distribution. The effect of the slug flow 
velocity profile is to give higher heat transfer rates than the 
fully developed laminar flow due to decreased thermal 
resistance near the wall. 

In general, a large class of problems in heat and mass 
transfer involving variable boundary condition parameters 
can be solved efficiently using the proposed methodology. 
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A P P E N D I X 

Determination of the Green's Function 

A necessary ingredient required for equations (8) and (9) is 
the Green's function itself, as governed by equations (3). The 
finite integral transform technique, as described in [6], is 
employed to obtain the desired Green's function in the form 

0(1,^0, So)= t ^ i y ^ e x p I - X ^ t t - g o ) ] (Al) 
m = l ^ ( U 

The eigenvalues Xm, and eigenfunctions $,„{?]), are obtained 
from the solution of the following: 

lpL + H0+m=0, V = l (A2c) 
ai) 

The normalization integral is defined as 

N(km)=\i n'-^-HWdri (A3) 

Calculations in the present investigation were performed for 
both laminar flow in a tube (/ = 1, v{r\) - 2(1 — T/2)) and slug 
flow in a tube (;' = 1, y(r/) = 1). The details of the solution of 
eigenvalue problem (A2) for laminar flow in a tube can be 
found in [7], where eigenfunctions corresponding to the 
smaller eigenvalues were generated using confluent 
hypergeometric functions and the solutions for larger eigen
values were generated using the asymptotic method of 
Lauwerier [8]. For the case of slug flow in a tube, the eigen
value problem (A2) generates Bessel functions, as summarized 
in [6, Table 3-1, p. 92]. 

A characteristic of the eigenvalues is that the difference be
tween two consecutive eigenvalues asymptotically approaches 
a constant. For slug flow this constant is W ^ and for laminar 
flow the constant is 4.0. Also, the square of the normalized 
eigenfunctions approaches a constant value asymptotically. In 
all cases these asymptotic values are independent of the value 
chosen for Hn. 
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A Wall Function for the 
Temperature Variance in Turbulent 
Flow Adjacent to a Diabatic Wall 
By assuming simple initial conditions for a surface-renewal calculation of thermal 
coupling between a thick solid and a well-mixed, low-Prandtl-number fluid, it has 
been possible to approximate the temperature variance near the wall in terms of a 
straightforward quadrature. Comparisons have been made with several ex
periments. The results are aimed at numerical solutions of the turbulent variance 
transport equation, which has thus far been solved with ad hoc boundary conditions 
applied at solid walls. 

Introduction 

There are several instances in which information about the 
magnitude of the temperature variance a2

T (=T'2) is impor
tant. For example (Launder, 1978; Hirata et al., 1982), the 
turbulent heat-flux equation is coupled to aT in flows which 
are influenced by buoyancy, and there are circumstances in 
which aT affects the mechanical integrity of solid structures 
immersed in, or containing, the turbulent fluid. 

Currently, there is apparently a dearth of methods for 
predicting temperature fluctuations near and at the surface of 
a wall that is in contact with a turbulent flow. One route which 
immediately springs to mind would utilize the simplest of all 
turbulent transport equations, that for o\, even if it is ap
preciated that the results would be of limited value in domains 
of low intermittency. The equation has been modeled and 
solved by many workers (Launder, 1978; Hirata et al., 1982), 
but it seems that usually, arbitrary boundary conditions have 
been applied at solid surfaces, like aT = 0 or daT/dn = 0 (where 
n is a normal coordinate). Generally, such boundary condi
tions are incorrect, and under those circumstances in which a 
time-mean heat flux passes through the wall the present paper 
provides an approximation to the wall function of a\. Such a 
wall function is analogous to those which are widely employed 
in numerical solutions of the momentum and energy equations 
(Launder and Spalding, 1972), although it is confined to the 
inner region. The variance equation is 

Dal 
-=-2u:T' 

Dt J 
dT 

dXj 
- - 2 X (-f-r-a^-^) dXj 

(1.1) 

The terms on the right-hand side represent, respectively, pro
duction, dissipation, and diffusion, and the various closures 
which have been proposed for these terms have related them to 
the molecular properties, the turbulent viscosity, the mean 
temperature, and aT itself. Hence, the equation can be solved 
once the second and third of these quantities are known, 
although a strong coupling may be anticipated between the 
variance equation on the one hand and the turbulence and 
thermal energy equations on the other when buoyancy is 
significant. The wall function proposed here would provide 
the boundary condition at a solid surface, since it describes aT 

in terms of the local time-mean heat flux, shear stress, and 
distance from the wall, whether these quantities are the true 
values or approximations from numerical iterations. 

The theory outlined here is based on the surface-renewal 
model, which has been revived and generalized in recent years 
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because of mounting experimental evidence in its support. 
Only a brief outline will be given here and the reader is re
ferred to Danckwertz (1970), Davies (1972), and Cantwell 
(1981) for more details. 

Experiments on the flows in the wall regions of turbulent 
boundary layers, dating back to the 1930s, conflict with the 
classical view of steady laminar behavior in that region, and 
have led some workers to prefer the term "viscous" to 
"laminar." 

The flow at a given point in the wall region is laminar-like 
but is punctuated by violent, rapid processes known as the 
burst and sweep, with a mean period between bursts around 
250v/u\ (Thomas, 1982; Blackwelder and Haritonidis, 1983). 
During a burst, part of the low-speed fluid is ejected upward 
(«' <0 , v' >0) toward the fluid bulk, and immediately after
ward, during the "sweep" phase, high-momentum fluid 
(«' >0 , v' <0) replenishes the ejected fluid. A long, tranquil 
period follows, during which molecular diffusion dominates, 
until the next burst signals a repetition of the cycle. As regards 
heat and mass transfer, researchers have found it necessary to 
include the influences of a thin, unreplenished layer at the wall 
in the so-called "surface rejuvenation" theory, when Prandtl 
or Schmidt numbers are moderate or high (e.g., Thomas, 
1980). 

In discussing these theoretical models it would probably be 
helpful to classify them into two categories. Both begin with a 
simplified governing equation, invariably of the diffusion 
type, and consider the deterministic problem representing 
molecular transfer from t = 0, the instant of in-rush, until 
t = 6, the instant of bursting. Models in the "periodic" 
category, based on Higbie's work (1935), regard the process as 
purely harmonic with frequency co, and calculate time-mean 
quantities over a period t = 8. The "quasi-stochastic" 
methods, on the other hand, introduce an ergodic element to 
the calculation by accounting for the continuous distribution 
of eddy ages. The Danckwerts formalism (e.g., Hanratty, 
1956; Davies 1972), used in this paper, has been popular and is 
particularly convenient because it leads to integrals resembling 
Laplace transforms, for which extensive tables are available. 

In heat transfer analyses the vast majority of papers have 
assumed that during the deterministic calculation the bound
ary condition at the wall surface is one of either constant 
temperature or constant heat flux, so that with one exception 
thermal coupling between fluid and solid has generally been 
unrealistically modeled. That exception is the work of Meek 
and Baer (1973), in which a periodic surface-rejuvenation 
calculation accounts for the coupling in the correct manner, in 
the presence of a time-mean heat flux. Formally, Meek and 
Baer's analysis can be regarded as satisfactory and complete, 
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albeit with an emphasis on high Pr and Sc. As will be 
elaborated below, penetration theories require specification of 
"initial conditions," distributions of the dependent variables 
at the instant of sweep, and successful results have been ob
tained for the fluid by assigning a uniform distribution of 
momentum, temperature or concentration to the penetrating 
eddy. Of course, such a kinematic constraint cannot be util
ized in the solid, where no eddies exist, and in the spirit of the 
period approach Meek and Baer searched for an initial 
temperature distribution Ts(y) in the solid such that 

Ts(y,6) = TS0(y) (1.2) 

where Ts(y, t) is the transient distribution in the solid. Ts was 
determined by a numerical, iterative scheme which can con
tribute significantly to computational time and costs of typical 
engineering calculations, since the scheme has to be im
plemented at each boundary element in codes which 
themselves iterate on the whole flow field sometimes hundreds 
or thousands of times (e.g., Patankar, 1980). The present 
paper assumes a simple, if somewhat crude Ts , which is no 
more than Meek and Baer's initial guess for their numerical 
iteration, but this leads to closed-form solutions which 
sacrifice some accuracy for the sake of much greater con
venience. The current theory is aimed at fluids having small 
Prandtl numbers and at heat transfer to a well-mixed fluid. 

Theory 

The prototype problem in the present calculation involves a 
plane interface separating the semi-infinite solid from the 
semi-infinite fluid (see Fig. 1). Only transport normal to the 
interface is considered, so that the processes in both the solid 
and the fluid are governed by the one-dimensional diffusion 
equation 

32 77 1 dT, ' / 
dy2 

d2Ts 

dy2 

1 dTs 

(2.1) 

(2.2) 

FLUID 

Tf(M-o) 

,oV %V£ 

SOLID 

Fig. 1 I conditions for the surface-renewal calculation 

The initial conditions are 

7>CV,0) = 0, Ts(y,0)=TSQ(y) (2.3) 

The temperatures all use T, as a datum, where Tt is the 
temperature assigned to the replenishing eddy. For moderate 
and high Pr, Tt may be taken to equal TK, but greater care is 
required when dealing with small Prandtl number (Thomas, 
1980; Meek and Baer, 1973; and equation 2.6, which defines 
T/ in terms of the mean interfacial temperature fw and the 
friction temperature TJ. Here, the assumption is made that 
7* is linear for all >• > 0 

TS0 = T0 + qwy/ks (2.4) 

where T0 will be chosen shortly. Now the Danckwerts theory 
(Thomas, 1982) states that under steady conditions the time-
averaged value of some quantity z is given by: 

z = uz(u) 

z{u>) = L[z(t);t-<1>]=\ e-»>z(t)dt 

(2.5a) 

(2.5b) 

Here L denotes a Laplace transform, with t being mapped to co 
in the specific case of equation (2.5b). 

The classical result (Davies, 1972) then follows 

qw=(o>cxf)
i/2fw (2.6) 

With equation (2.4) the solution is particularly simple, and by 

N o m e n c l a t u r e 
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specific heat (at constant pressure for a fluid) 
thermal conductivity 
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initial temperature distribution in the solid 
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T„ = 
T. = 

U, V, W = 
u* — 

x,y,z = 
Y = 

YT = 

j 0 v 

free-stram temperature (external flow) 
friction temperature = q^/pjCjU^ 
fluid velocity components 
friction velocity = (rw/pj)'A 

Cartesian coordinate system 
-y 
nondimensional height of inner region 

Y+ = uY/v 
a = 

7 

r 

7 
pck 
Yf/Ys(af/as)

v' 
1/0 
thermal responsivity 

A = 

1? = 

e = 
x = 
v- = 
V = 

£ = 
p = 

T 

* 
0) 
fl 

(flPr)* 
mean burst period = 1/co 
thermal diffusivity = k/pc 
(s/\)'A 

momentum diffusivity 
VY+ 

density 
rms value of z', (z'2)Vl 

oTJ<JTw, equation (2.11) 
aT as ? — oo, equation (2.13) 
mean shear stress 
equation (2.116) 
mean burst frequency, Hz 

Superscripts 

= time average 
= fluctuation component 
= transform with respect to time, with t mapped to 

rip 

/ 
J 
s 
w 

ts 

= 
= 
= 
= 

fluid 
/ o r s 
solid 
at solid/fluid interface 

862/Vol. 109, NOVEMBER 1987 Transactions of the ASME 

Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



imposing consistency on T„ within the framework of equation 
(2.5), T0 is found to be equal to fw, leading to 

" r ( 4 - 7 r ) P r l ! / 2 
Of 

(1+/3) 
where T is the friction temperature and the bursting fre
quency has been normalized as co = fiw2 A / (Thomas, 1982; 
Blackwelder and Haritonidis, 1983), where fi = 0.004. Now 
consider y<0; taking Laplace transforms of equations (2.1) 
and (2.2), mapping / to s, leads to: 

7} (y,s)=AekP> 

ts( y, s) = — (fw + qwy/ks) +Be-^y 

(2.8a) 

(2.86) 

where 

"«-£(: *n + fa*s ) 

B(s) = WJ }\ 
A \sy2 Bu*sJ 

(2.8c) 

= s/X;: A=r,+r, 
Inverting equation (2.8a) 

7>0, 0 = 
1 

VY+ 

&** er fcL2(x /o
, / 

'A V 4co? / (47TC0) ' 

*(z) = 2z ' l / ! e ~z - 2TT I/! erfc(z 'A) 

Here?j equals (QPr)'/!. Substituting in the relation 

ff2
r/=<oj V<*T}(y, t)dt-w2Pf(Y, co) 

finally yields 

•tt 

(2.9a) 

(2.96) 

(2.9c) 

(2.10) 

1 (4 - 7r) 

where erfc is the complementary error function (Abramowitz 
andStegun, 1965) 

* £ ) - j o v ' [ 2 ( - f r ^ - ^ y ^ r ^ (2-m) 

and 5T is CTr normalized with respect to its value at the wall. 
Two asymptotic results are useful; for small £ 

dr/~1+7("TT7-)* + oa2)' * - ° (2-12) 
On the other hand, for large £ 

°T, -m)-(y+i)2e-2il 

( 4 \ l /2 
oo (2.13) 

It must be emphasized, though, that aT does not necessarily 
increase monotonically between 1 and aT . Equation (2.11) 
constitutes the principal result of this paper. It relates the 
variance to the physical properties of the two media and to the 
local shear stress and heat flux, fi may reflect a Reynolds 
number dependence, as discussed below. 

Discussion 

Generally, \p cannot be determined analytically, but it is 
easily evaluated as a quadrature on a computer, provided the 
lower limit is replaced by a finite, small number. This has been 
done, and the results are shown in Fig. 2, as aT versus £ for 
several values of p. 

As predicted by equation (2.13), all the curves are asymp
totic t o u T as J —oo but it should be remembered that the 

— J I I I r 

1-0 2-0 30 4-0 
5 

- i 1 1 1 1 1 

5-0 6-0 7-0 8'0 

Fig. 2 The fluid rms temperature fluctuation, normalized with respect 
to its value at the solid/fluid interface, as a function of nondimensional 
distance from the wall 
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\\x •% 
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Fig. 3 Comparison of equation (2.12) with the measurements of 
Tanimoto and Hanratty (1963) in air: theory: ; experiment: 

present theory only applies within an inner region. The extent 
of the inner region can, in principle, be determined by invok
ing the proposition made by Thomas (1980), whereby the in
ner law is matched to the classical intermediate region by con
sidering the mean fluid temperature. This leads to 

(l+CT ,r,- |Pry7 .)e-"1 '7-=l (3.1) 

where YT denotes the value of 7 + representing the limit of the 
present model's domain of validity. 

It turns out that equation (3.1) does not always possess a 
solution: Indeed, examination of the expression for small YT 

shows that no solution will exist if 

Pr<Q(Pr,/AT)2 no solution (3.2) 

To the author's knowledge, the bursting frequencies for flow 
of low-Prandtl-number fluids have not been measured exten
sively, but if the value quoted above is true, then equation 
(3.2) indicates that for some liquid metals no solution to equa
tion (3.1) will exist. However, the absence of a solution to 
equation (3.1) under certain circumstances is a minor issue as 
far as the present theory is concerned, although it does merit 
investigation; certainly, restricting the proposed wall function, 
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Table 1 Experimental conditions (Hochreiter and Sesonske, 1969) 
Re 

26,800 
41,500 
56,900 

Pe 

690 
1160 
1300 

ub, 
f t s " 1 

2.1 
3.5 
4.2 

fts*"1 

0.12 
0.18 
0.21 

9w< 
Btu s - 1 f t"2 

3.406 
3.297 
3.314 

Tb, 
°F 

216 
171 
256 

°F 

2.10 
1.27 
1.14 

1-4 

1-2 

10 • 

0 

0 

0-4 -

0-2 

0 

H H5-

0 1 2 3 4 

t 
Fig. 4(a) Re = 26,800, = 0.0101 Y + = 7.54 Y/fl0 

1 6 T 

1-4 -

1-2 

! i ,.o 

0-8 

0 6 

0 4 

0-2 

0 

H 1-̂ -

Fig. 4(b) Re = 41,500, = 0.0106 Y + =11.5 Y/fi0 

~A 

Fig. 4(c) Re = 56,900, = 0.00955 Y + = 13.7 Y/fl0 

Fig. 4 Comparison of theory with the measurements of Hochreiter and 
Sesonske (1969) for NaK-56 flowing in a stainless steel tube. Theory: 

; experiment: o; d is the probe diameter 

equation (2.11), to Y+ < 100 for liquid metals would be a safe 
step to take (see Thomas, 1970). 

Considerable data for the wall region in air have been given 
by Tanimoto and Hanratty (1963), although no details were 
given of the tubing. Their measurements at different axial 
locations in developing pipe flow exhibited a near-linear pro
file qualitatively similar to equation (2.12). The latter equation 
predicts (assuming mild steel tubing, Pr = 0.7, 7 = 3620, 
•q = 0.053) 

ff7>/7;~i.9xio-3 + o.49y+, r + <<i9 (3.3) 
This asymptotic result is compared with Tanimoto and 
Hanratty's measurements in Fig. 3; while the prediction may 

be regarded as qualitatively adequate, there are significant 
discrepancies in amplitude and this suggests that the surface-
renewal theory should only be applied to fluids having small 
Pr when considering rms fluctuations of temperature (or con
centration), even though it has been found to be quite accep
table for moderate Pr and Sc as regards mean velocity, 
temperature and concentration (Thomas, 1980, 1982). This 
conclusion may be confirmed by examining the classical 
"decay length" or "skin depth" Xy/(27rco)'/2 for harmonic 
temperature fluctuations of frequency w imposed at the 
boundary of a semi-infinite medium having thermal diffusivi-
ty \f. This depth is a measure of the distance at which the fluc
tuation amplitude falls t o e ' 1 of its value at the boundary. 
Assuming frequency scaling as dictated by Thomas (1982) and 
Blackwelder and Haritonidis (1983), this depth is found to be 
L+ = {2irWv)~Vl in wall units. Thus, for liquid metals having 
Pr = 0.02, the skin depth is about 45, which is much greater 
than the "penetration depth" Y+ —1 to 5 used in the surface-
rejuvenation theory, and the thermal resistance of the 
unreplenished layer is therefore deduced to be negligible. For 
moderate Pr, however, the skin depth is Y+ —6, which is com
parable to the penetration depth, and the influence of the 
unreplenished layer is seen to be significant. 

Equation (2.7) is in fairly good agreement with accurate 
numerical computations performed by Meek and Baer (1973) 
for Tetralin flowing in a pyrex tube; for a value of 0.24 as
signed to /3, equation (2.7) predicts <rT/Tw = 0A0, with no 
dependence on Reynolds number, and Meek and Baer's full 
computations yielded aT/Tw — 0.07, with only a very weak 
variation with Re. Further comments will be made below on 
the role of uncertainties in the value of Q. 

A useful quantitative comparison can also be made with the 
work reported by Hochreiter and Sesonske (1969), who 
measured temperature fluctuations by NaK-56 flowing in a 
tube made of type 304 stainless steel. Three of their tests have 
been chosen to encompass most of the range of Reynolds 
numbers which they covered, and Table 1 lists the relevant 
parameters for these tests (in Imperial units). 

It should be emphasized that « , and Tt have both been 
deduced from Hochreiter and Sesonske's paper, the former on 
the basis of the standard Blasius correlation cf = 0.079 Re-' /4, 
and the latter from sodium-potassium properties quoted in 
Foust (1972). Hochreiter and Sesonske's measurements are 
shown in Fig. 4(a- c), plotted as aT/Tt versus £, and the solid 
curves show the theoretical predictions, which are given by 

°Tf 8.26 Pr,/2 

—L = g (3.4) 
T. (1+7) f 

Based on stainless steel properties listed in the Metals Hand
book. (1961), the corresponding theoretical parameters are 
delineated in Table 2. 

The comparisons are encouraging, although the discrepan
cies in Fig. 4(c) are significant. Several points should be made. 

(0 The experimental measurements were made inside a 
tube, whereas the present theory is intended for planar flows 
and should therefore only be applied when Y/R0 < < 1. Some 
feel for the scale can be acquired by noting that £ = 1 cor
responds, in all three tests, to Y+ =0(100) and Y/R0 = 0 
(1/10). 

(if) There is some uncertainty about the values of the ther
modynamic properties of both the fluid and the wall. It is 
recommended that in future experimental programs these 
parameters are noted, or measured and reported. 
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Table 2 Theoretical conditions 

Test 
number 

1 
2 
3 

0 
0.58 
0.58 
0.56 

ar /T 
1 w * 
0.486 
0.507 
0.448 

0 - 4 - o 
O 

0-2 • 

0 I . . . . . . . , , . 
0 1 2 3 4 5 

3 
Fig. 5 Comparison of theory with measurements of Bobkov et al. (1965) 
in mercury: theory: ; experiment: o Re = 7 x 1 0 4 , a 
Re = 1.25x105 

(in) 0 has been assumed to be equal to 0.004 (Thomas 
1982). This may be inaccurate. 

(iv) The theory predicts a high gradient of aT in the region 
£ <0.5. However, the thickness of this region is comparable to 
the probe diameter and the thermocouple readings are 
probably unreliable in that vicinity (Hochreiter and Sesonske 
assumed that the measurement closest to the wall was at a 
distance of one-half the probe diameter, or 0.0075 in.). A 
more definitive judgment must await detailed measurements 
within this zone. 

No comparisons will be made with Rust and Sesonske 
(1966) because buoyancy effects were significant in those ex
periments. Figure 5 compares the present theory with 
measurements made in mercury by Bobkov et al. (1965), at 
Reynolds numbers of 7 x 104 and 1.25 x 105. As with most 
of the papers, insufficient information was provided on the 
tube material and properties, and for the theoretical predic
tions stainless steel type 304 was assumed. The agreement is 
good at the higher Re but the theory overestimates aT at and 
below the former Re. The most likely explanation is a devia
tion of fl from the assumed value of 0.004; as noted in the in
troduction, there is considerable scatter of experimental data 
about this value in Fig. 2 of Thomas (1982), and moreover 
some of the measurements reflect a dependence on Reynolds 
number. Thus, there is clearly a need for experimental data on 
for low-Pr fluids, and in fact equation (2.7) is being proposed 
here as a convenient means of measuring 0, for specific 
fluid/wall pairs. 

Finally, the prediction shown in Fig. 5 can be compared 
with the near-wall experimental correlation for mercury flow 
provided in a recent paper by de Lemos and Sesonske (1985) 

ffr/7;=8.7xlO-6Re + Re0-0258.>>+ (3.5) 

The Reynolds number of the experiments ranged between 3 x 
104 and 9 x 104. The first term on the RHS reflects a 
dependence on Re which is qualitatively similar to Bobkov et 
al. (1965). However, the second term is too large, since the 
coefficient of y + is 0 (1) and j>+ may acquire values up to 100. 
The present asymptotic prediction (equation (2.12), assuming 
constant Q again) is aT/Tt -0 .44 +0.006 .y+ . 

Conclusions 

The paper has outlined a simple technique for approx
imating the wall function for the temperature variance when 
heat is transferred, in the time-mean, between a thick solid 
and a well-mixed, turbulent fluid. By assuming a linear initial 
temperature distribution in the solid, as part of a surface-
renewal model, the problem degenerates to a straightforward 

quadrature, equation (2.11). Attention has been confined to 
low-Prandtl-number fluids; comparisons with the measure
ments reported by Hochreiter and Sesonske (1969) and 
Bobkov et al. (1965) are encouraging. 

Clearly, scope for improvement of the method does exist, 
particularly in relation to the initial conditions assumed for 
the surface-renewal calculation. This aspect is being addressed 
and will have particular bearing on configurations in which 
the time-mean heat flux is small. 

Note Added in Proof 

In another recent paper (Proc. Third Int. Topical Meeting 
on Reactor Thermal Hydraulics, Newport, RI, Oct. 15-18, 
1985, C. Chiu and G. J. Brown, eds., ANS, Paper No. 21.F), 
de Lemos gives a coefficient of y+ in equation (3.5) that reads 
Re~0-528, in closer agreement with the present theory. Such 
correlations can be used for estimating the variation of fi with 
Re, although equation (3.5) was provided for only one pair of 
substances. 
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Forced Convective Heat Transfer 
in Curved Diffusers 
Measurements of the velocity characteristics of the flows in two curved diffusers of 
rectangular cross section with C and S-shaped centerlines are presented and related 
to measurements of wall heat transfer coefficients along the heated flat walls of the 
ducts. The velocity results were obtained by laser-Doppler anemometry in a water 
tunnel and the heat transfer results by liquid crystal thermography in a wind tunnel. 
The thermographic technique allowed the rapid and inexpensive measurement of 
wall heat transfer coefficents along flat walls of arbitrary boundary shapes with an 
accuracy of about 5 percent. The results show that an increase in secondary flow 
velocities near the heated wall causes an increase in the local wall heat transfer coef
ficient, and quantify the variation for maximum secondary-flow velocities in a range 
from 1.5 to 17 percent of the bulk flow velocity. 

Introduction 

Curved passages with changes in cross-sectional area are 
frequently employed in aircraft turbine intake and exhaust 
ducts and in turbomachinery blade passages. Knowledge of 
the velocity and heat transfer characteristics of the flows in 
such ducts is desirable in order to enhance understanding of 
the processes involved and aid the design of relevant turbine 
components. The present paper is primarily concerned with 
the convective cooling effects of secondary flows on curved 
duct walls and the processes in singly and doubly curved dif
fusing ducts are investigated. 

The characteristics of developing flows in constant-area C-
shaped ducts have been investigated in detail by Taylor et al. 
(1982), Enayet et al. (1982), and others, and in S-shaped ducts 
by Bansod and Bradshaw (1972) and Anderson et al. (1984). 
The results have shown that the secondary flows present in C 
and S-shaped ducts of mild curvature reach maxima of 0.25 
and 0.15 of the bulk flow velocity (Vb), respectively, in tur
bulent flow. Stronger duct curvature results in higher cross-
stream velocities, of up to around 0.4 Vh, and in general there 
are two pairs of counter-rotating vortices in S-ducts as op
posed to the single pair present in unidirectional bends. 
Measurements in a 45-deg curved diffuser have been reported 
by McMillan (1982) and showed that a deceleration of the 
secondary flows is produced by the area expansion. Graziani 
et al. (1980) used thermocouples to measure the heat transfer 
on the walls of a turbine blade passage and reported that the 
secondary flows and the thickness of the endwall boundary 
layer greatly influenced the heat transfer process. 

The use of thermocouples is relatively inefficient when 
localized three-dimensional effects are to be investigated over 
a comparatively large area, and liquid crystal thermography 
provides a rapid, inexpensive, and accurate alternative for 
such measurements. The suitability of liquid crystals for con
vective heat transfer work has been demonstrated by Cooper 
et al. (1975) and others. The technique developed for the 
present investigation made use of a heating element/liquid 
crystal sheet assembly designed to enable measurements in a 
variety of passages of complex geometries. 

In the present study, the flows in C and S-shaped diffusers 
were investigated, with one of the flat walls of the ducts heated 
for the heat transfer experiment. The choice of this thermal 
boundary condition was made in order to facilitate interpreta
tion of the heat transfer results in view of the complexity of 
the flows studied. Results were also obtained in a straight 
square duct and in a C-shaped diffuser with a pair of vortex 
generators at the inlet to enable comparisons with both 
simpler and more complex flows. 

Contributed by the Heat Transfer Division and presented at the ASME 
Winter Annual Meeting, Miami Beach, Florida, November 1985. Manuscript 
received by the Heat Transfer Division June 30, 1986. 

The flow configurations investigated are described in the 
following section, together with the laser velocimeter used for 
the mean flow results in the water tunnel and the liquid crystal 
bed used for the heat transfer results in the wind tunnel. The 
flow and heat transfer results are then presented in the two 
following subsections and discussed in the penultimate sec
tion. The paper closes with a list of the main findings. 

Flow Configurations and Experimental Procedures 

Curved Diffusers. The test sections were constructed of 
Plexiglas to allow optical access through all walls and con
sisted of two 22.5-deg bends, with a radius of curvature of 280 
mm, in series. The cross section of the bends expanded linearly 
with the downstream distance on both curved surfaces. The 
geometry of the C-shaped diffuser is shown in Fig. 1(a). The 
S-shaped diffuser was assembled by turning the second 
22.5-deg bend by 180 deg about the centerline at the 
6 = 22.5-deg plane. The inlet cross section of the diffusers was 
square (40 ±0.1 mm X 40 ± 0.1 mm) and the exit cross section 
rectangular (40 ±0.1 mm x 60 ±0.1 mm) with an exit-to-inlet 
area ratio of 1.5. The effective total divergence angle for an 
equivalent straight diffuser is 5.2 deg. The dimensions of the 
upstream and downstream tangents matched those of the dif
fuser inlet and exit, respectively, to ±0.1 mm. The 
donwstream tangent was 2 m long in the water tunnel and in 
the wind tunnel it was kept to 5 cm since it had no influence on 
the flow in the ducts. The short length of the upstream 
tangents and the small expansion ratio (and, in the case of the 
S-duct, the small centerline displacement) were chosen to have 
developing flows and conditions similar to those encountered 
in aircraft intake ducts. Both the water and the air tunnel had 
inlet contractions of 12:1 area ratios to ensure smooth en
trance flows and there were no discontinuities on the duct 
walls. A 0.5-mm boundary layer trip was incorporated at the 
entrance to the inlet tangent. The water tunnel has been 
described in detail by Taylor et al. (1982) and the wind tunnel 
by Rojas and Yianneskis (1984). 

The coordinate system is also shown in Fig. 1(a). Stream-
wise distance is measured in hydraulic diameters of the 
upstream tangent (DH - 0.04 m). Water was employed as the 
working fluid for the velocity measurements so that the same 
Reynolds number (Re) could be obtained at a velocity much 
smaller than that achieved in air and to allow high measure
ment accuracy. Measurements were made at Re = 40,000 in 
the water flow and at Re = 35,000 in the air flow, based on 
DH and on the bulk flow velocity in the upstream tangent Vb, 
which was 1.0 m/s for the water flow and 12.5 m/s for the air 
flow. Velocity measurements were made on both sides of the 
symmetry plane and it was established that the flows were 
symmetric to within the precision of the measurements. The 
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Fig. 1(a) C-diffuser flow configuration, dimensions, and coordinate 
system; all dimensions in mm 
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Fig. 1(b) Vortex generators: all dimensions in mm 

similarity of the air and water flows was also established by 
measurements. 

In order to investigate the influence of a typical inlet mixing 
device on the flow, a pair of vortex generators was installed on 
the inside wall of the C-diffuser (at r* = 1.0, XH = 0.0). The 
blade pair is shown in Fig. 1(b) in the X-r* (top view) and 
X-z* (side view) planes. 

The Laser-Doppler Veloclmeter. The laser-Doppler 
velocimeter was of the dual-beam fringe type and operated in 
forward scatter. Measurements in three directions (0, ±45 deg 
to the local streamwise direction) were made with the beams 
entering through the side wall to provide the local streamwise 
(t/and u) and radial (Kand v) mean velocities and turbulence 
levels, in the manner described by Melling and Whitelaw 
(1976). Frequency-tracking demodulation was used for the 
processing of the measured Doppler frequencies. The optical 
and signal processing system have been described in detail by 
Taylor et al. (1982), together with the sources and estimates of 
experimental error. In brief, systematic errors are generally of 
the order of 1 percent of the local velocity values shown, rising 
to 2-3 percent in the regions of steep velocity gradients near 
the walls. 

Liquid Crystal and Heating Element Assembly. The 
heating element assembly consisted of an acrylic plastic base 
on which an expanded polystyrene insulating sheet and two 
copper bus bars were attached with a stainless steel foil 25 fim 
thick stretched on them. A roller mechanism was used to 
stretch and hold the foil in place, and a pair of contact blocks 
and clamps was employed to ensure a good and uniform con
tact between the bus bars and the foil. The free area of the foil 
was 0.3 m x 0.3 m and the part of this area not covered by the 
duct was insulated to minimize heat losses. A uniform heat 
flux condition was obtained by passing an a-c electrical cur
rent through the bus bars and foil. 

The liquid crystals (organic materials which exhibit a 
mesophase, i.e., an intermediate phase between a pure 
crystalline solid and a pure liquid phase) respond to changes in 
temperature by exhibiting different colors due to Bragg dif
fraction of light from the molecular layers in the crystals. A 
cholesteric liquid crystal sheet was used, and consisted of a 
0.092-mm-thick crystal layer embedded on a 0.137-mm-thick 
mylar sheet, with a black absorptive background. The sheet 
was attached to the foil with a double-sided adhesive tape. The 
sensitivity (color response) of the crystal sheet was in the range 
of 35-36°C and it was calibrated to 0.1 °C in a constant-
temperature bath immediately before the measurements were 
made. Photographs of the crystals during calibration and dur
ing the experiments were taken with the same film, illumina
tion and angle of view. The green color corresponding to 
35.7°C was chosen as the isotherm indicator for the wall 
temperature measurements. 

The whole assembly was placed so as to form the lower 
(flat) side wall of the duct investigated, and the heating was 
applied from the inlet of the diffusers to the end of the ducts 
(50 mm downstream of the diffuser exit plane). Current was 
applied to the bus bars at first without flow in the ducts, and 
photographic recordings of the isotherms were made for dif
ferent current settings. In this manner the green isotherms 
would be placed in a multitude of locations, enough to 
describe the "no-flow" heat flux (q{) distribution over the 
wall. Heat fluxes were calculated from the measurement of the 
current and of the resistance of the heating element, by q = 
PR. But q1 = qL + qN, where qL is the heat lost by conduc
tion and radiation and qN the amount of heat maintaining 
natural convection in the duct. An accurate estimate of qN can 
be obtained in the manner described by O'Toole and Silveston 
(1961). Subsequently the flow was turned on and the mapping 
of the green isotherms for different current settings was 
repeated. The heat flux measured was then q2 = qj + qL 
where qf is the forced convection heat flux, and qf = q2 — <7i 

+ QN-

The bulk air temperature Tb was constantly monitored and 
recorded during the experiments. The local bulk temperature 
was determined by measuring Tb at the duct inlet and exit 
under flow conditions with a thermocouple and by assuming a 
linear increase in Tb through the duct, as suggested by Barrow 
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Fig. 4 Velocity results for C-diffuser with vortex generators: (a), (b) con
tours of 0/Vb; (c), (d) profiles of V/Vb 

(1962). As the wall temperature at each point is known from 
the crystal colors, the wall heat transfer coefficient at each 
point can be found from h = q//(Tw — Tb). 

The total experimental error in h in the procedure described 
above was estimated in the manner suggested by Brady and 
Odorizzi (1981) and was found to be, typically, 5 percent of 
the h value calculated. Effects such as the crystal viewing 
angle, conduction through the mylar sheet (causing a dif
ference in temperature between that at the wall surface and 

that indicated by the crystals), lateral conduction, heat losses 
from the part of the foil not covered by the duct, and that of 
the different rates of heating have been estimated to be either 
negligible or well within the total error quoted above. 
Results 

Velocity Results. The turbulent flow streamwise and 
radial mean velocity component results obtained in the water 
tunnel are shown in Figs. 2-4; those of Figs. 2(b) and (d) and 
3(b) and (d) have been reported previously by Rojas et al. 
(1982). The results are presented as contours of U/Vb and pro
files of V/Vb in r*-z* planes below the plane of symmetry, 
with the left and right-hand side walls being the r* = 0 and r* 
= 1.0 walls, respectively, and the bottom wall being the side 
wall. 

It is useful to distinguish two characteristic regions, a high-
velocity "core" region where the flow is akin to potential 
flow, and a near-wall region of boundary layer flow where 
most of the secondary flow activity takes place. The stream-
wise velocities in the C-diffuser show a slight asymmetry and a 
large potential core at the inlet plane (Fig. 2a), and a large 
redistribution of the isotachs by the exit (Fig. 2b). The core 
region migrates toward the outside (r* = 0.0) wall in its 
passage through the diffuser, and a large region of slow-
moving fluid is found near the inside wall at the exit. The 
radial velocities are small, of the order of 0.05 Vb at the inlet 
(Fig. 2c) and show a displacement of the flow toward the in
side wall. A counterclockwise rotation can be observed in the 
V profiles in Fig. 2(d), as a result of the curvature-induced 
secondary flows, with maxima of 0.15 Vb near the sidewall. At 
r* = 0.1, the velocities are always directed toward the outside 
wall, probably as a result of the area-expansion-related cross 
flows superimposed on the curvature-induced ones. 

The measurements obtained in the inlet of the S-diffuser 
were identical to those shown in Figs. 2(a) and (c), as the ef
fects due to the differences in geometry do not travel upstream 
by more than about one hydraulic diameter. Different velocity 
patterns were recorded though near the plane of inflection 
(Fig. 3a, at a plane 20.5 deg downstream of the inlet) and in 
the exit plane (Fig. 3b). The core region is located further 
away from the r* = 0.0 wall than in the C-diffuser, and it 
follows an S-shaped path through the duct. The radial 
velocities in Figs. 3(c) and (d) show that the secondary flow 
vortex has been established by the XH = 2.5 station with a 
maximum of 0.17 Vb near its side wall at r* = 0.8. However, 
two distinct and opposite rotations can be observed in the exit 
plane cross flows, a counterclockwise one near r* = 0.9, z* = 
0.3 and a clockwise one near/-* = 0.1, z* = 0.8. The former is 
due to the persistence of the secondary flow generated in the 
first bend and the latter is due to the curvature of the second 
bend, in agreement with the findings in uniform-area S-ducts 
(Anderson et al., 1984). 

The results obtained with the pair of vortex generators at 
the inlet of the C-diffuser are shown in Fig 4. Significant 
changes in the U and V distributions can be observed in com
parison to the results of Fig. 2, especially near the inlet. The 
data in Fig. 4(a) and (c) were taken at XH = 0.125, as the 
presence of the blades prohibited measurements at XH = 0.0. 
A strong clockwise-rotating vortex is produced behind each 
generator blade as shown in Fig. 4(c), with Kreaching 0.4 Vb. 
The vortex is about 0.25 DH in diameter and the flow from r* 
= 0.5 to the inside wall is dominated by its presence. The ef
fect of the vortex on the exit plane V profiles is not as strong 
(compare Fig. 2c? to Ad) as near the inlet, but the redistribution 
of the steamwise isotachs in Fig. 4(b) is markedly different 
from that in the C-diffuser. 

Turbulence level and cross-correlation results are not shown 
for economy of presentation, as no firm conclusions could be 
drawn about the influence of turbulence characteristics on the 
wall heat transfer. Detailed velocity results, together with 
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Fig. 5 Contours of constant Nusselt number on lower wall of straight 
square duct; flow direction is from left to right; : results from 
straight duct, and : results downstream of a 90-deg bend, from 
Rojas and Yianneskis (1984) 

240 

0 40 , , 80 120 
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Fig. 6 Contours of constant Nusselt number on lower side wall of C-
diffuser; flow direction is from bottom right to top left 

associated pressure measurements, flow visualization, and 
laminar flow data can be found in reports by Rojas et al. 
(1983, 1985). The data are available on magnetic tape for ease 
of comparison with numerical calculations of the flows. 

Heat Transfer Results. The h values calculated from the 
heat transfer measurements were used to plot contours of 
Nusselt number, defined as Nu = hD/k, where k is the ther
mal conductivity of the convecting fluid (air in this case). The 
data are presented as contours of Nu to allow comparisons 
with data reported in the references quoted. Contours of Nu 
(or of the Stanton number St) are, in effect, lines of constant, 
non-dimensional heat transfer coefficient and provide an in
dication of heat transfer characteristics irrespective of duct 
size. 

As the flows in the diffusers are complex, the technique was 
first employed to measure the wall heat transfer in a straight 
duct of square cross section, in order to enable comparisons 
with previously obtained data and to facilitate the interpreta
tion of the results by reference to a simpler geometry. Con
tours of Nu in fully developed turbulent flow along the bot
tom wall of a 40-mm square duct are shown in Fig. 5. Heating 
was applied from X = 0 mm to 280 mm (7.0 DH downstream), 
where the duct exit was located. Novotny et al. (1964) 
measured fully developed Nusselt numbers Nu^ = 70 in a sym
metrically heated square duct at Re = 35,000 and the analysis 
of Sparrow et al. (1966) suggests that Nuy is 15 percent lower 
in the case of ducts with only the bottom wall heated, i.e., Nuy 
= 59 for the present duct. As Nu tends asymptotically to the 
Nuy value, thermally fully developed conditions are not 

X(mm) 

Y(mm) 

Fig. 7 Contours of constant Nusselt number on lower side wall of S-
diffuser; flow direction is from bottom right to top left 

reached by the exit of the duct. The variation of the ratio of 
the local to the fully developed Nusselt number Nu/Nuy in the 
present case follows that measured by Davies et al. (1984) in a 
two-dimensional duct at Re = 32,000 to within 2 percent. The 
straight duct results indicate the viability of the technique for 
accurate measurements of local wall heat transfer coefficients. 
The dashed and dotted lines on Fig. 5 refer to the data of 
Rojas and Yianneskis (1984) and are discussed in the following 
section. 

Contours of Nu over the C and S-diffuser heated side walls 
are presented in Figs. 6 and 7, respectively. The inlet planes of 
the diffusing part of the ducts are located in the bottom right-
hand corner of the plots and the exit planes are denoted by a 
dashed line. Nu is higher in both geometries, by about 25 per
cent on average, in comparison to the values in the straight 
duct. Higher values of Nu are found near the inlet and near 
the r* = 0.0 wall in both ducts. 

The heat transfer results obtained with the vortex generators 
in the inlet of the C-diffuser yielded similar Nu values to those 
of Fig. 6, but their distribution was markedly different in the 
first half of the duct. A qualitative comparison of typical 
isotherms (traced directly from the photographs) obtained 
with (dashed line) and without (solid line) the vortex 
generators is shown in Fig. 8. The heat fluxes were identical in 
both flow configurations. The shaded regions are the cooler 
ones. The convective cooling produced by the vortex behind 
the blade is evident as a sharp peak separated from the main 
flow cooling by a region of low convection. The cooling pat
terns are however very similar near the diffuser exit. The 
overall area kept at the lower temperature is smaller with the 
vortex generators. 

Discussion 
The results presented in the preceding section allow the 

evaluation of the effect of secondary flows of various 
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Fig. 8 Diagram showing the location of the blue/green line isotherm on 
liquid crystal sheet for the same heat flux condition in the C-diffuser 
with and without the vortex generators: q" = 450 W/m2K, T = 35.7°C 

magnitudes on the convective cooling of duct walls. The 
Reynolds and Rayleigh numbers of the flows examined are 
such as to place the flows in the turbulent, forced-convection 
regime. 

The straight duct heat transfer results can be considered in 
conjunction with the velocity measurements of Melling and 
Whitelaw (1976) in an identical duct geometry. The Reynolds-
stress-induced secondary flows in the duct of Melling and 
Whitelaw reached maxima of 0.015 Vb near the walls at 
distances of about 0.3 DH away from the corners: These are 
the same locations where maxima of the streamwise velocity 
component were measured. In the present results (Fig. 5) the 
maximum Nu region is located in the central one-third of the 
wall but only a single peak can be distinguished. However, in 
the experiment of Rojas and Yianneskis (1984) the same h 
values were obtained but with two peaks with values approx
imately 2 percent higher than in the center in the locations of 
the velocity maxima. This difference arises from the smaller 
number of points used to plot the present result (196 over 280 
mm as opposed to over 100 mm in the investigation of Rojas 
and Yianneskis), and indicates the detail of measurement re
quired to resolve such effects. Typical results from Rojas and 
Yianneskis (1984) are reproduced in Fig. 5 to enable com
parison. The dashed and dotted lines show the measurements 
in the straight duct and 2.5 diameters downstream of a 90-deg 
bend, respectively; by comparison of the latter Nu profile with 
those of Figs. 6 and 7 it can be expected that all significant 
features of the Nu distributions in the present curved 
geometries have been resolved. 

In the case of the curved ducts, previous investigations by 
Mori et al. (1971) have reported that wall heat transfer in 
uniform-area curved ducts increased because of the secondary 
flows and Graziani et al. (1980) reported that the heat transfer 
in turbine cascade passages was largely determined by the 
secondary flows between the blades and by the inlet boundary 
layer thickness. As has been reported by Taylor et al. (1982), 
thicker boundary layers result in stronger secondary flows in 
curved ducts and the two effects will be considered as one in 
the following discussion. The present results show that curved 
diffuser flows with secondary flow maxima of 0.15-0.17 Vb 

result in higher wall heat transfer than in straight duct flow (h 
and Nu values are 40-50 percent higher in some locations) 
where the cross flows are smaller by an order of magnitude of 
Vb. The corresponding Stanton numbers, defined with the 
bulk velocity at the inlet and wall-to-local-bulk temperature 
difference, were in the ranges 0.028-0.048 and 0.019-0.051 in 
the C and S-diffusers respectively, compared with 0.02-0.04 in 
the straight duct. 

Variations of Nu (and of h and temperature) across the duct 
wall are present in all configurations and they may result from 
reasons other than convective cooling. In the corner regions 

Nu variations are partly due to the smaller convective heat 
transfer capability (because of the slower-moving fluid present 
there) than in the central region of the wall, an effect which is 
not present in circular-cross-section pipes. Conduction to the 
unheated walls is not expected to be important to the heat 
transfer in the corner region, partly due to a layer of insulation 
installed at the end of these walls. Longitudinal variations of 
wall temperature (and Nu) result partly because a thermally 
developed state is not achieved in any configuration in the 
curved ducts by virtue of the developing nature of the flows. 
Although in straight circular pipes thermally developed 
regimes can be achieved after 10-20 DH, there is no evidence 
about thermal entry lengths in asymmetrically heated rec
tangular ducts (Sparrow et al., 1966). 

The increase in the bulk flow temperature due to the heating 
of the wall was about 0.5 °C in the centerline of the curved 
ducts and its rise with longitudinal distance was similar to that 
of the heated wall temperature, in accordance with the 
findings of Sparrow et al. (1966). 

Apart from the aforementioned sources of h and Nu varia
tions, the curved duct Nu distributions of Figs. 6 and 7 appear 
to be influenced first by the core flow with the Nu contours 
following in general the shape of the centerlines of the ducts, 
and secondly by the secondary flow activity. The most striking 
evidence of the latter effect can be observed in the qualitative 
results of Fig. 8. However, the complexity of the three-
dimensional flow patterns does not allow a clear distinction of 
the core flow and of the secondary flow influences. The radial 
locations where the streamwise mean velocity gradients are 
higher, in general near the side wall under the core regions, 
and the locations of the near-wall V maxima can be mostly 
found in all cross sections in close proximity to the high heat 
transfer regions (e.g., at XH = 5.5 in the C and XH = 2.5 in 
the S-diffuser). 

Concluding Remarks 

1 Velocity measurements obtained by laser-Doppler 
velocimetry and wall heat transfer measurements obtained by 
liquid-crystal thermography of the turbulent, forced-
convection flows in two curved diffusers with C and S-shaped 
centerlines were reported. 

2 The liquid-crystal technique enabled the rapid and inex
pensive measurement of local wall heat transfer coefficients 
over a heated flat wall in the ducts with an uncertainty of 5 
percent. 

3 Secondary flows resulting from the curvature of the ducts 
and from the expansions in area are present in both diffusers 
and reach maxima of 0.17 of the bulk flow velocity Vb. 

4 The wall heat transfer results quantify the effects of 
secondary flow in a range of 0.015-0.17 Vb and indicate that 
stronger convective cooling takes place in the diffusers than in 
a straight duct of similar cross section. Higher Nusselt 
numbers were recorded in locations where the near-wall 
streamwise velocity gradients and the radial mean velocity 
components were higher. 
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Impingement Heat Transfer Within 
Arrays of Circular Jets: Part 
1—Effects of Minimum, 
Intermediate, and Complete 
Crossflow for Small and Large 
Spacings 
An experimental study of the effects of three jet-induced crossflow schemes on im
pingement heat transfer was made. The schemes, referred to as minimum, in
termediate, and maximum crossflow correspond, successively, to unrestricted flow 
of spent air away from the target surface, restriction of the flow to leave through 
two opposite sides, and through one side of a rectangular impingement surface. The 
study covered jet Reynolds number, jet-to-surface spacing, and open area of 
1000-21,000, 2-16 jet hole diameters, and 1-4 percent, respectively. The best heat 
transfer performance is obtained with the minimum scheme, intermediate and com
plete crossflow being associated with varying degrees of degradation. For a given 
blower power, heat transfer can be enhanced markedly by having greater number of 
jets over a fixed target area; notably when working with the minimum scheme at 
narrow jet-to-target spacings. 

1 Introduction 
Heat transfer characteristics within arrays of circular jets 

have been studied quite extensively, especially in connection 
with the design of internal cooling schemes for gas turbine air 
foils. Of the numerous other applications, mention is made 
here of cooling of planar VLSI circuits, evaporation from ex
posed liquid surfaces, and drying of various materials. The 
last two applications provided the motivation for the present 
study. 

The flow field for any multiple jet system is very complex 
and is characterized by two types of interaction: interference 
between neighboring jets prior to impingement and collision 
of the developing wall flows from adjacent nozzles, the latter 
being referred to hereafter as the crossflow. Depending, of 
course, on jet-to-jet spacing (Xn, Y„), and jet-to-surface spac
ing (Z„), the effects of either or both of these on impingement 
transfer rates can be quite pronounced. In the case of 
crossflow, its influence on transfer rates can be further accen
tuated by restricting the spent flow to leave through one or 
two sides of a rectangular impingement surface. For brevity, 
complete (or maximum) and intermediate crossflow, as used 
hereafter, refer to the former and latter situations, respec
tively, while unrestricted flow of spent air away from the heat 
transfer surface is associated with minimum crossflow (Fig. 

1). 
From the brief summary of some of the relevant literature 

(Table 1) it may be noted that, although complete or max
imum crossflow has been studied by previous researchers, 
notably by Metzger et al. (1979), very limited investigations 
were carried out with intermediate crossflow. In fact, for im
pingement on flat surfaces, the only study with intermediate 
crossflow (Friedman and Mueller, 1951) considered one 
standoff spacing. Later, Huang (1963) considered impinge
ment on a convex drum with partial restriction of the spent 

Table 1 Summary of relevant previous studies 

Author(s) 

Friedman and Mueller 
(1951) 

Allander (1961) 
Gardon and Cobonpue 

(1961) 
Kercher and Tabakoff 

(1970) 
Chance (1974) 
Cole (1978) 
Hollworth and Berry 

(1978) 
Metzger et al. (1979) 
Florschuetz et al. (1980) 
Saad et al. (1980) 
Florschuetz et al. (1981) 
Florschuetz et al.(1984) 

Z„ (range) 

3-10 
2-8 

4-32 

1-4.8 
2-8 
1-3 

1-25 
1-4 
1-3 
1-3 
1-3 
1-3 

flow scheme 

intermediate, maximum 
minimum 

minimum 

maximum 
maximum 
maximum 

minimum 
maximum 
maximum 
maximum 
maximum 

intermediate, with 
initial crossflow 

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division September 
12, 1986. 

air, but the magnitude of the effect of crossflow cannot be 
determined from his results. 

Previous researchers were concerned mainly with separation 
distances in the range one to five jet hole diameters, as this is 
the range of interest in the aforementioned gas turbine ap
plications. The works by Hollworth and Berry (1978) and Gar
don and Cobonpue (1962) complement one another, in that 
the spent air flowed freely away from the heat transfer sur
face, a situation that is associated with minimum crossflow ef
fects (Fig. 1). However, use of the correlation proposed by 
Gardon and Cobonpue is conditioned by knowledge of the 
dependence of arrival velocity on nozzle details, while the 
results of Hollworth and Berry are valid for large jet-to-jet 
spacings. Even for the case of complete crossflow, the 
standoff spacing of eight jet hole diameters represents the 
maximum that has been tested (Chance, 1974). 

The present paper, the first part of a larger research pro
gram on impingement heat and mass transfer, is devoted to a 
comprehensive study of the effects of crossflow for small and 
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large jet-to-surface spacings. The subsequent papers will con
sider the role of crossflow in the presence of roughness 
elements, and evaporation from small and large liquid sur
faces exposed to impinging heated air jets. 

In this paper, results are presented for the three flow 
schemes depicted in Fig. 1. The standoff distance and jet 
Reynolds number were varied between 2 and 16 jet hole 
diameters and 1000 to 21,000, respectively. At least 250 test 
runs were carried out during this phase of the research pro
gram. It should perhaps be noted at the outset that, since the 
present results were averaged over large segmented test plates, 
they do not reveal highly localized trends. However, some of 
the gross effects of crossflow and geometric variables are very 
important and, on this basis, the results should be of some in
terest in applications other than those that motivated this 
study. 

2 Test Facility and Procedure 

The experimental facility, essentially the same as that 
presented elsewhere (Obot et al., 1984), will be briefly de
scribed here. It consisted basically of a blower which delivered 
room temperature air through a calibrated orifice, a 203-mm-
square plenum chamber containing layers of screen and 
aluminum honeycomb, and interchangeable nozzle plates. 
Average air temperature in the plenum was determined from 
the readings of a chromel-constantan thermocouple, its in
stallation being such that it could be moved transversely 
through a threaded fitting located on the side of the plenum. 
Plenum static pressure, and hence pressure drop across each 
nozzle plate, was averaged from the readings of 12 taps using a 
manifold assembly. The nozzles were fabricated by boring 
square-edged holes, 3.175 mm in diameter, in 305-mm-square 
aluminum plates of thickness 9.53-mm, giving a thickness-to-
diameter ratio of 3.02. The layout of the inline jet holes is also 
illustrated in Fig. 1. Expressed in terms of the relative nozzle 
(or open) area Aj, the values for the 48, 90, and 180-jet-hole 
plates could be stated as 0.0098, 0.0196, and 0.0352, suc
cessively. The jet hole arrangement for the latter was such that 
the same number of jets impinged on each segment of a test 
plate (smooth or rough). 

The impingement surface consisted of a 609-mm-square 
Plexiglas plate, the central portion of which contained the 
assembled aluminum heat transfer surface. The latter is 
formed by cementing six aluminum plates of thickness 5.5 
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Fig. 1 Definitions of flow schemes and geometric variables 

mm. Each plate segment of width and length 35 and 204 mm, 
respectively, is insulated from the next using a 2 mm strip of 
asbestos. Six thermocouples were installed in each segment 
with the objective of determining the average surface 
temperature. The couples were lined with two-hole ceramic 
tubings and then epoxied into holes drilled from the back of 
the plate to within 1 mm of the heat transfer surface. All 
couples were connected to a 40-port rotary switch to facilitate 
monitoring of surface temperatures. 

Each aluminum segment was heated separately with 30-gage 
insulated nichrome wires located in small grooves machined in 
the back surface. Each was powered with a separate d-c power 
supply, and the heating circuit included a fixed resistor, a 
variable resistor, and a shunt of known resistance. The elec
trical power input to each unit was evaluated from the current, 
as determined from the voltage across the shunt, and the 
voltage measured directly across each segment. To minimize 
heat conduction from the back surface of the plates, a 
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25.4-mm layer of Kaowool insulation was taped to this side of 
the plate. 

Provision was made (in the form of three 12.7-mm-square 
grooves in the Plexiglas plate and bordering the heat transfer 
surface) to facilitate boxing in of two or three sides of the rec
tangular test plate. Flat wooden spacers were prepared for all 
standoff spacings to be tested. By sliding the appropriate 
spacers into place, the spent air was constrained to leave 
through one or two sides of the test plate (Fig. 1). For tests 
with no restriction of the spent air flow direction, 12.7-mm-
square wooden strips were inserted in the grooves, and the 
clearance between the plexiglass and the test plate was neatly 
lined with epoxy, to give a smooth continuous surface for air 
flow away from the heat transfer surface. 

Expressed as values of Nusselt number, individual plate 
results were computed from 

Nu=(Qcd)/(kfA)(Ts-TR) (1) 

where the convective contribution Qc is the difference between 
the power input and the losses. The latter, determined ex
perimentally in the absence of the flow, represented the total 
electrical power input required to maintain the plates at the 
same surface temperature as in tests with flow. With this 
method, the losses ranged from 2 to 31 percent of the power 
input to the segments. 

The validity of the above method was also verified ex
perimentally for the case with complete crossflow. The Qc 

values determined by the above technique were compared with 
those calculated from the mass flowrate of exiting air, the 
nearly constant specific heat, and ATe. Here, ATe is the dif
ference in the average temperatures of the exiting air, one set 
of steady-state temperature measurements being taken just 
before power was supplied to the plates and the other when 
isothermal conditions were established with power. These 
readings (25 to 50 depending on the value of Z„ tested) were 
obtained by traversing a dual capability pitot static probe (i.e., 
measures total temperature as well as total and static 
pressures) across the entire exhaust exit. For example, with a 
jet Reynolds number^ of 4800, the differences between the two 
sets of Qc data at Z„ = 2, 4, and 6 were 6, 0.4, and 1.2 per
cent successively. In fact, for each of the^ight qualification 
runs carried out for several Re and Z„ in the ranges 
4800-20,000 and 2-8, respectively, the two sets of data dif
fered by no more than 8 percent. 

A final comment, one that is of considerable importance to 
the design engineer, deals with the choice of reference 
temperature TR for use in equation (1). Many researchers use 
the plenum or jet exit temperature. Although this is strictly in
correct, the advantages are that either can be measured quite 
easily and is, insofar as isothermal jets are concerned, essen
tially independent of axial location. In principle, TR should be 
the average recovery temperature measured at the target sur
face, but this depends on several variables: jet-to-surface spac
ing, Re, spanwise and streamwise locations at the surface, 
notably when working with complete crossflow. For the latter 
situation, TR may also be defined by (Tp + Te)/2, where Tp 

and Te are the steady-state plenum and initial exhaust air 
temperatures. Suffice it, for the moment, to state that the 
present experiment was designed to permit a thorough evalua
tion of use of all of these reference temperatures, and this will 
be explored in the next section. 

3 Results and Discussion 

In view of the observations in the last paragraph of the 
preceding section, we begin this presentation by considering 
the effect the choice of TR has on the calculated heat transfer 
coefficients, a typical trend of which is displayed in Fig. 2 for 
the case with maximum crossflow and Af = 0.0352. It can be 
seen that use of the average adiabatic wall {Taw) or plenum 
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Fig. 2 Effect of choice of reference temperature 

temperature yields about the same results while, relative to the 
other two, the choice of the bulk mean temperature can be ex
pected to give results that are higher by about 15 percent. 
Similar differences were computed for results obtained for 
spacings in the range of Z„ between 2 and 8. To provide a con
sistent basis for evaluation of the effects of the various flow 
schemes on heat transfer, especially since the bulk mean 
temperatures are not readily determined for minimum 
crossflow, adiabatic wall temperatures were used for calcula
tions of all results presented hereafter. It should be mentioned 
that, since these temperatures were taken at least one and a 
half hours after the establishment of the air flowrate for a run, 
they correspond to the steady-state values in the absence of 
power input to the plates. 

It must not be inferred from Fig. 2, however, that the choice 
of Tp as the reference temperature will always give about the 
same heat transfer coefficients as with Taw, for obviously the 
nominal temperature difference (Tp — Taw) does depend on 
the range of Reynolds number tested. For example, whereas 
this temperature difference was within 1°C for Re < 10,000 
(Fig. 2), it ranged from 2°C to 4°C when Re was increased 
over the range of values between 10,000 and 21,000. De
pending, of course, then on the mean surface temperature 
(7^), the use of Tp may result in Nu values that are larger than 
those obtained with Taw as the reference temperature. In this 
study, the mean temperature difference (Ts — 7^) was held 
close to 15°C for most of the trials. 

Local Mean Nusselt Numbers. Figures 3-5 show trends for 
heat transfer coefficients averaged over each segment of the 
test plate. Although the compact presentations in Figs. 3 and 4 
for Re = 11,000 and_5^500 are intended to illustrate the varia
tion with increasing Zn, there is one common feature between 
the figures: Due to doubling the number of jet holes from 90 
to 180, the air mass flowrate is the same. Here, X is the 
distance measured from the upstream end of the sixth test 
plate (i.e., farthest from the exhaust in the case of complete 
crossflow), while L is the width (streamwise) of the assembled 
test plate, exclusive of the small allowances taken up by the 
strips of insulation. The location of each data point cor
responds closely to the center plane of each segment. For com
plete crossflow, the Nu trend with increasing Re is illustrated 
in Fig. 5 for Z„ = 4. 

A study of the results in Figs. 3-5 reveals many interesting 
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features. One of the most obvious is the significant 
downstream degradation in heat transfer due to maximum jet-
induced crossflow, a finding that is in complete agreement 
with virtually all of the published literature on the subject 
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(Metzger et al., 1979; Florschuetz et al., 1981; Chance, 1974; 
to mention but a few). It is often speculated that, in the 
presence of maximum crossflow, the area-integrated heat 
transfer coefficient for the region farthest from the exhaust is 
not significantly affected by the crossflow originating from 
that region. Figures 3 and 4 show quite conclusively that this is 
indeed the case, this being true for the three nozzle configura
tions tested and for all Re in the range 1000 to 20,000. 

When the spent air is discharged through two opposite sides 
of the rectangular impingement surface, a symmetric flow 
distribution is expected which, in turn, should result in nearly 
symmetric distribution curves for heat transfer coefficients. 
This is verified by the results in Figs. 3 and 4 which show Nu 
values that are generally higher over the central portion of the 
impingement surface than near the two exhaust openings. It is 
also quite evident from Figs. 3 and 4 that a fairly uniform 
cooling occurs when the spent air flows freely away from the 
heat transfer surface, and that any departure from this consis
tent pattern is due to directional discharge of the flow. 

A closer examination of Figs. 3 and 4 reveals a marked ef
fect of maintaining a fixed air flowrate and doubling the 
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number of jets over a given surface. It will there be observed 
that, for any particular exhaust scheme, the results in Fig. 3 
with the (10, 4) arrangement are significantly higher than 
those obtained with the (5.6, 4) nozzle plate, the latter being 
characterized by more closely spaced jets in the stream wise 
direction. This is of course consistent with expectations 
because, for a given flowrate, the exit velocity, as well as that 
at impingement, decreases with increasing jet holes in an ar
ray. This observation is in agreement with the findings of 
Hollworth and Berry (1978) and Metzger et al. (1979). It is 
also especially noticeable that the absolute effect of crossflow 
is more pronounced in Fig. 4 than in Fig. 3, notably for the 
scheme with one exhaust opening. For example, at Z„ = 2, 4, 
6, and 8, the complete crossflow results averaged over the 
three downstream plates are, successively, 28, 28, 36, and 49 
percent (Fig. 3), and 47, 69, 80, and 106 percent (Fig. 4) lower 
than those obtained with the minimum scheme. In fact, even 
for the case of intermediate crossflow, the percentage dif
ferences in Fig. 4 are larger than in Fig. 3, especially for the 
last plate jiegments at each exhaust opening. The trend with in
creasing Z„, documented here for complete crossflow, is in 
agreement with that of Chance (1974). 

It might appear at first, from the presentation in the 
preceding paragraph (as well as _th_at of either of the references 
cited therein, where Nu or Nu was plotted against the 
Reynolds number based upon the mass flowrate per unit heat 
transfer surface area Re) that there may be no real advantage 
in doubling the number of jets over a given surface area, ex
cept of course for the attendant more uniform cooling or 
heating. Kercher and Tabakoff (1970) provided extensive 
results for a square array of round jets. For a constant jet hole 
diameter, as is the case in the present study, they varied Xn 

and reported increased heat transfer by having a greater 
number of jets over a given surface. The basis for their obser
vation will be examined in the next section. 

Average Nusselt Numbers. It is important to note that 
average Nu values were computed from the total convective 
contribution for all six plates. Figure 6 is an alternative 
representation of the data in Figs. 3 and 4, the data for Af = 
0.0098 being included for completeness, and show the varia
tion of Nu with Z„ for all flow schemes. It is strikingly ap
parent that, at low flowrates corresponding to Re = 5000, 
2600, and 1300 for Af = 0.0098, 0.0196, and 0.0352, respec
tively, Nu decreases steadily with increasing spacing for any 
particular flow scheme. It can be established that Nu <x Zn", 
where n depends on the exhaust scheme. With a fourfold in
crease in air flowrate, although the results for the widely spac
ed arrays still exhibit the same general trend as noted above, 
each of the three Nu profiles for the tightest jet hole arrange
ment passes through a maximum around Z„ = 4. Hollworth 
and Berry (1978) reported a similar trend for their most com
pact array. It is of some interest to note that the results of Met
zger et al. (1979), Saad et al. (1980), and Kercher and 
Tabakoff (1970) also show an increasing trend with Z„ up to 
about Z„ = 4, the maximum Z„ range for which extensive 
data were reported by these investigators. 

The different trends outlined above with increasing Z„ and 
Aj appear to be primarily the result of jet interference prior to 
impingement, a phenomenon which has received relatively lit
tle attention in the past. For a given array and prior to im
pingement, interference in all directions with the neighboring 
jets can be expected when X„ and Y„ values are about the 
same as the nondimensional axial distance in the free jet (z/d). 
One clear consequence of this interaction and mixing with 
neighboring jets is a reduction in the axial velocity in the 
downstream direction. Also, the intensity of this interference, 
and its effect on heat or mass transfer, must be expected to de
pend on the turbulence level at the nozzle exit and at locations 
downstream, both of which do vary with Reynolds number. 
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At large Xn, Y„, and for a given Re, jet interaction occurs at 
larger downstream distances, and the attendant mixing pro
cess associated with the reduced axial velocity and low tur
bulence level is nol^so intense_as to produce any measurable ef
fect on a typical Nu versus Z„ trend, this being equally true in 
the case of closely spaced jets with low Re. At large Re with Af 

= 0.0352, the high turbulence levels both at the nozzle exit 
and downstream locations, together with that induced by the 
interacting jets, combine to bring about a maximum in heat 
transfer. Consistent with the lowering of the axial velocity in 
the downstream direction due to jet interference, it will be 
observed that, beyond the spacing which_affords the max
imum, there^ is an appreciable drop in Nu with further in
creases in Z„. The views advanced here may help explain the 
marked drop in Nu with Z„ as reported by Hollworth and 
Berry for their tightest array and Re > 3000. 

The effects of Reynolds number on average heat transfer 
are shown differently in Figs. 7-9, the first of which is simply 
a plot of Nu versus Re with the nozzle diameter as the 
characteristic length. In the second figure, the length scale is 
the appropriate spanwise jet hole spacing for (10, 4) and (10, 
8), similar to Figs. 10 and 11 of Kercher and Tabakoff (1970), 
which formed the basis for their observation that the greater 
the number of jets over a given area, the higher the heat 
transfer coefficientjbr a fixed jet hole diameter. In Fig. 9, Nu 
is plotted against Re, where Re = Re • Af (Hollworth and 
Berry, 1978; Metzger et al., 1979). 

Figure 7 shows that .Jbr a specified Re (or same jet hole 
plate pressure drop), Nu increases with increasing Af, in 
agreement with the observation of nearly all investigators. A 
change of slope with increasing Re is clearly in evidence for 
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some of the test conditions which are given in Fig. 7. This ex
pected trend is also in agreement with the results of previous 
studies. The presentation on Fig. 8, while suppressing the dif
ferences due to nozzle geometric configurations or exhaust 
scheme, provides little evidence to support the view that the 
90-hole jet plate is more effective than the 48-hole arrange
ment. In fact, all results in this figure are closely approximated 
by a single equation with an exponent on Re ,̂ of 0.797 (cor-
relation_coefficient = 0.992), suggesting that correlation of all 
data at Z„ = 4 may be accomplished with a constant value for 
the exponent on Reynolds number. Kercher and Tabakoff 
based their conclusion on results averaged over the plate seg
ment located farthest from the exhaust opening. However, 
countering this upstream enhancement is the significant 
downstream degradation with increased jet holes in the array. 
Clearly, their observation is not of general validity. In terms 
of Re or Rey (Figs. 7 and 8), it is quite apparent that the basis 
for the comparison is that of unequal air mass flowrate. 
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It was noted in the previous section that comparison be
tween Figs. 3 and 4 might lead one to conclude that some 
benefits could be obtained by maintaining widely spaced hole 
arrangement in an array. The use of Re (Fig. 9), i.e., based on 
the mass flowrate per unit heat transfer area, does not modify 
that view. For a given mass flowrate and fixed jet hole 
diameter, the picture that emerges then from Figs. 7-9 is one 
of no clear definitive statement concerning the advantage of 
increasing the number of jets over a given area. 

To carry the analysis and discussion to a satisfactory con
clusion, at least insofar as the real advantage of greater over 
fewer jet holes is concerned, it is more instructive to consider 
the blower power requirements. For a given flowrate, this 
power is simply the product of the pressure drop across the 
nozzle plate and the corresponding volumetric flowrate based 
on the actual flow area. Naturally, since this pressure drop 
decreases significantly wth increasing number of holes over 
the given area, it was envisaged that plots of Nu versus E 
should provide realistic perspectives for examining the effec
tiveness of the different arrangements. The results of such 
calculations are illustrated in Fig. 10. The relations which are 
quoted therein represent logarithmic best fits through the data 
for the most widely spaced jets with Aj = 0.0098. In each 
case, the correlation coefficient was between 0.99 and 1.0, and 
the exponents on E are quite consistent with the available 
literature. It is of interest to note that the alternative ap
proach, which involves plots of Nu versus the blower power 
per unit heat transfer area, leads one to the same conclusion as 
already mentioned in connection with Fig. 9. 

It can be seen that, for a given E, better heat transfer perfor
mance is realized with a greater number of jets over a fixed 
target area, the least improvement being obtained when work
ing with the complete crossflow scheme. In view of the marked 
degradation in heat transfer with increasing Af, discussed 
already in connection with Figs. 3-5, this outcome is not sur
prising. Also, since the absolute effect of complete crossflow 
is more pronounced at larger spacing (Z„ > 5) than for Z„ < 
5, it can be readily appreciated that there is no advantage to 
using closely spaced jets when designing for large jet-to-
surface situations. 

Comparison of the present results with some of the pub
lished data obtained with segmented test plates is given in Fig. 
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Table 2 

Flow scheme 

Minimum 
Intermediate 
Maximum 

Summary of predictive equations 

A0 

0.863 
0.484 
0.328 

m n 

0.8 Fig. 12 
0.8 Fig. 12 
0.8 Fig. 12 

X 

0.815 
0.676 
0.595 

11 for the most widely studied maximum crossflow scheme. In 
each case, the results are for the plate segment located farthest 
from the exhaust opening, with minimum crossflow effects. 
The solid line corresponds to a logarithmic best fit of our data, 
while the dashed line is obtained from the Chance correlation 
for Af = 0.0098. The differences which are observed here can 
be attributed largely to the residual effects of nozzle geometric 
details, mass flowrate, and averaging area. Chance's data for 
Af = 0.0069 follow the expected trend, being about 24 percent 
lower than ours; but his correlation gives about the same 
results. The results of Kercher and Tabakoff are higher than 
ours by roughly a constant factor of 1.25. A Prandtl number 
of 0.7 was used to scale down their results. To gain insight on 
the possible_sources of this disagreement (since differences in 
Aj- and Z„ are minimal), it is instructive to com
pare the number of jets in the array (NT), exit hole velocity 
(V0) range, and averaging area (A), as these are clearly the 
most important parameters. For their study, NT = 256, V0 = 
68-415 m/s, and A = 645 mm2, in sharp constrast with (in the 
same order) 48, 12-105 m/s, and 7140 mm2 of the present 
study. On the basis of this information, the trend on Fig. 11 is 
exactly as would be expected. The moderate differences be
tween our results and the types A and B plenum data of Met-
zger et al. (1979) and Florschuetz et al. (1980) are due to the 
same reasons as outlined above. 

Correlation of Average Nusselt Numbers. In principle, for a 
constant Prandtl number, Nu can be represented by the 
relation 

NU=A0RQ'"Z„"A 
•f (2) 

where A0 is a regression coefficient. In practice, however, the 
determination of A0, m, n, and x is complicated by their 
dependence on flow and geometric conditions. As can be in
ferred from Fig. 8, although the exponent on Re is a function 
of Z„ or Af, there is only mild dependence on the exhaust 
scheme. For a fixed jet hole opening, as is usually the case in 
many practical situations, the variations with Z„ or Af is such 
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that a single value would suffice. For example, using data for 
all Z„ and Af, the present m values could be stated as 0.82 ± 
0.08, 0.72 ± 0.08, and 0.77 ± 0.09 for minimum, in
termediate, and maximum crossflow, successively, with an 
average value of 0.77 ± 0.09, which is about as good as the 
rounded value of 0.8 reported by other investigators. For the 
exponent on Z„, the situation was quite different and, as 
would be expected, there is a marked variation with Af and ex
haust scheme as shown in Fig. 12. Likewise, a constant x value 
for all exhaust schemes would result in about a 20 percent 
variation about such a mean regression value. For Re = 
1000-21,000, Af = 0.0098-0.0352 and Z„ = 2-16, the recom
mended values of A0, m, and n for each predictive equation 
are summarized in Table 2, To calculate average heat transfer 
coefficient for any particular flow scheme, the pertinent infor
mation is provided in Table 2 and Fig. 12. For each flow 
scheme, individual differences between measured and 
calculated values are under 10 percent for 85 percent of the 
nearly 80 data points. A typical fit of the proposed correlation 
to the experimental data is illustrated graphically in Fig. 13 for 
intermediate crossflow. For clarity, coincident data points are 
not so identified in Fig. 13. 
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4 Concluding Remarks 

This experimental investigation was carried out to deter
mine the effects of three crossflow schemes on impingement 
heat transfer from smooth surfaces. The schemes tested in
clude unrestricted flow of spent air away from the target sur
face, restriction of the flow to leave through two opposite 
sides, and through one side of a rectanglar impingement sur
face. For brevity, these are referred to as minimum, in
termediate, and complete crossflow, successively. 

It has been established that the best heat transfer perfor
mance (with respect to magnitude and uniformity of cooling) 
occurs with minimum crossflow, with moderate and substan
tial reductions in average heat transfer with intermediate and 
complete schemes, respectively. For a given mass flowrate of 
air, the results show quite conclusively that the greater the 
number of jets over a fixed target area, the more pronounced 
the degradation in heat transfer with intermediate or complete 
crossflow and that, relative to the minimum scheme, the 
magnitude of this effect increases with increasing jet-to-
surface spacing. 

For a given Re, the larger the open area (i.e., the greater the 
number of jets over a fixed target area at constant d), the 
higher the heat transfer coefficient. This is clearly a natural 
consequence of maintaining about the same pressure drop 
across the nozzle plate with varying flowrate. The real advan
tage of using a denser hole arrangement comes from con
sideration of the blower power requirement. For a specified 
flowrate and hole diameter, the jet can be generated using 
fewer holes with a large pressure drop, or a larger number of 
holes with substantially lower pressure drop; but, for a given 
blower power and at narrow jet-to-target spacings, the latter 
gives better heat transfer performance, regardless of the spent 
air flow scheme used. At larger spacings and in spite of jet in
terference prior to impingement, the preceding observation is 
still true for the minimum scheme. However, due to the 
marked effect of crossflow with increasing spacing, no 
benefits can be established from our results for use of a more 
compact in place of a widely spaced arrangement. 
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Forced Convection in a Channel 
Filled With Porous Medium, 
Including the Effects of Flow 
Inertia, Variable Porosity, and 
Brinkman Friction 
This paper presents a series of numerical simulations which aim to document the 
problem of forced convection in a channel filled with a fluid-saturated porous 
medium. In modeling the flow in the channel, the effects of flow inertia, variable 
porosity and Brinkman friction are taken into account. Two channel configurations 
are investigated: parallel plates and circular pipe. In both cases, the channel wall is 
maintained at constant temperature. It is found that the general flow model predicts 
an overall enhancement in heat transfer between the fluid/porous matrix composite 
and the walls, compared to the predictions of the widely used Darcy flow model. 
This enhancement is reflected in the increase of the value of the Nusselt number. Im
portant results documenting the dependence of the temperature and flow fields in 
the channel as well as the dependence of the thermal entry length on the problem 
parameters are also reported in the course of the study. 

Introduction 
Porous media heat transfer has been attracting the attention 

of an increasingly large number of investigators in recent 
years. The need for fundamental studies in porous media 
heat transfer stems from the fact that a better understanding 
of a host of thermal engineering applications in which porous 
materials are present is required. The accumulated impact of 
these studies is twofold: first to improve the performance of 
existing porous-media-related thermal systems, and second to 
generate new ideas and explore new avenues with respect to 
the use of porous media in heat transfer applications. Some 
examples of thermal engineering disciplines which stand to 
benefit from a better understanding of heat and fluid flow 
processes through porous materials are geothermal systems, 
thermal insulations, grain storage, solid matrix heat ex
changers, oil extraction and the manufacturing of numerous 
products in the chemical industry. 

The overwhelming majority of existing studies pertinent to 
heat and fluid flow in porous media makes use of the Darcy 
flow model [1]. This model features a linear momentum equa
tion, which states that the volumetrically averaged velocity in 
any direction in space is proportional to the pressure gradient 
in that direction. The popularity of the Darcy flow model in 
convective heat transfer studies is justified: The model is sim
ple and has performed well within the range of its validity [1]. 
The main limitations of the Darcy flow model are the 
following: 

(a) It is not appropriate for "fast" flows, i.e., flows for 
which the Reynolds number based on the local velocity and 
pore diameter is greater than 0(1). 

(b) It does not satisfy the no-slip condition on a solid 
boundary: In convective heat transfer problems, heat is often 
transferred to (or from) the fluid saturating the porous matrix 
through a solid boundary. In such cases the predictions of the 
Darcy model have been challenged [2, 3]. 

(c) It does not account for the spatial variation of the 
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matrix porosity. It has been shown [4-9] that high porosity 
regions in a porous matrix (exemplified by regions near solid 
walls) are more penetrable by the fluid flowing in the porous 
matrix. As a result, "channels" of fast flowing fluid are 
created in these regions with significant effects on the heat 
transfer characteristics of the system [8, 9]. 

Even though limited, there exist studies of convective heat 
transfer in porous media, which make use of flow models that 
relax some or all of the above limitations. To this end, the 
works of Vafai and Tien [2], Vafai et al. [9], and Vafai [8] are 
relevant. Reference [2] in particular constitutes one of the first 
theoretical attempts to account for boundary and inertia ef
fects in porous media forced convection. The studies in [8, 9] 
thoroughly document, theoretically and experimentally, the 
effect of flow channeling in flat plate forced convection. 
Significant differences were found both in the flow field and 
in the temperature field and heat transfer, caused by the 
presence of variable porosity, flow inertia, and Brinkman fric
tion. The effect of flow channeling was to enhance the heat 
transfer from the wall. On the other hand, increasing the flow 
inertia reduced the heat transfer, relative to the Darcy flow 
model. The impact of flow inertia in natural convection 
problems has been investigated by Poulikakos [10] and Bejan 
and Poulikakos [11]. With reference to natural convection 
Georgiadis and Catton [12] reported interesting theoretical 
results relevant to flow instability in a horizontal porous layer 
in the non-Darcian regime. The numerical findings for the 
Prandtl number effect on the overall heat transfer through a 
horizontal porous layer [12] were found to be in good agree
ment with experiments performed later by Jonsson and Catton 
[13]. Pertinent to enclosure natural convection in non-Darcy 
porous media is [14]. In addition to the above, a study of 
laminar flow through a porous channel bounded by isother
mal parallel plates, based on the Brinkman-extended flow 
model and for constant matrix porosity, was recently reported 
[15]. In this study, it is shown that the velocity field changes 
gradually from parabolic (classical fluids limit) to uniform 
(Darcy limit) as the Darcy number decreases. Results are 
reported for the hydrodynamic entry and the thermal entry 
regions as well as for the fully developed regions. 
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The present paper focuses on an interesting problem which 
is of both fundamental and practical value, for it relates to 
several of the abovementioned thermal engineering applica
tions, namely, the problem of forced convection in a channel 
filled with porous material. The model used to describe the 
flow in the channel accounts for all the phenomena neglected 
in the Darcy flow model: variable porosity, Brinkman fric
tion, and flow inertia. It is worth noting that unlike the 
hydrodynamic entry length, which is usually short in porous 
media channel flows, very little is known about the thermal 
entry length. One of the goals of this study is to present de
tailed results on the thermal entry length by using the general 
flow model. Two channel geometries are investigated exten
sively: (a) parallel plates, and (b) circular pipe. Comparisons 
of the results of the general flow model to the results of the 
Darcy flow model are also reported in the course of the study. 
As will be shown in the following sections, these comparisons 
reveal significant differences of engineering importance in the 
heat and fluid flow characteristics of the configurations of in
terest. Finally, the range of the problem parameters in which 
the non-Darcy terms in the momentum equation (such as iner
tia terms) are significant for the present problem is identified. 

Mathematical Formulation 

The system of interest is shown schematically in Fig. 1. 
More specifically, Fig. 1(a) depicts a channel filled with fluid-
saturated porous medium and bounded by two solid horizon
tal walls. Both these walls are kept at constant temperature 
T„. The fluid at the inlet of the channel is isothermal at 
temperature T, with T, ̂  Tw. In the spirit of the Graetz prob
lem in classical fluids, a fully developed velocity profile is 
assumed at the channel inlet. This assumption is much more 
justified in porous media flows than it is in classical fluid 
flows for it has been shown [2] that the velocity boundary 
layer growth in porous media takes place over a distance of 
order 0 (KV/v). Therefore, in most practical cases the 
hydrodynamic entrance length is negligible. Figure 1 also il
lustrates the fact that regions of high porosity exist near the 
solid walls. The exact variation of porosity with the distance 
from the walls will be discussed in detail later in this section. 
Figure 1(b) shows the second duct configuration of interest to 
the present study, namely, a circular pipe of diameter D. The 
previous discussion pertinent to the parallel plate configura
tion holds in this case as well. Assuming that the fluid and the 

(b) 

Fig. 1 Schematic of the configurations of interest: (a) a channel filled 
with fluid saturated porous medium and bounded by two horizontal 
solid walls; (b) a circular pipe filled with a fluid-saturated porous 
medium 

porous medium are in local thermal equilibrium, and that the 
effective thermal diffusivity is constant, yields the following 
energy equation governing the convection phenomenon in the 
channel 

dT 1 dT 
• — ( ' 

dy \ dy 
(1) 

Note that m = 0 corresponds to the parallel plate case (Fig. la) 
while m = 1 is relevant to the circular pipe configuration (Fig. 
lb). The coordinate systems are defined in Fig. 1. The effec
tive thermal diffusivity is denoted by ae. The effective thermal 
diffusivity of the porous medium is assumed to be constant in 
the course of this study, for simplicity. The variation of 
porosity is expected to have an effect on the thermal diffusivi
ty. This effect will be minimal when the thermal diffusivity of 
the porous matrix is of the same order of magnitude as the 
thermal diffusivity of the fluid. Taking into account the varia
tion of the effective thermal diffusivity with porosity will 
greatly complicate the problem and make any theoretical solu
tion unattractive. This seems unnecessary since significant 
knowledge on the effect of channeling on heat transfer can be 
acquired by assuming that ae remains constant. It is worth 
noting that the viewpoint that ae remains constant when the 
porosity decreases exponentially with distance from a solid 
wall is shared unanimously by all authors of papers relevant to 

N o m e n c l a t u r e 

A = 

B = 

cn = 

D = 

H = 

K = 
K = 

m = 

Forchheimer's function, 
equation (5) 
dimensionless parameter, 
equation (9) 
dimensionless coefficients, 
equation (9) 
fluid specific heat at con
stant pressure 
channel width or diameter, 
Fig. 1 
dimensionless sphere 
diameter = d/H 
channel half-width or 
radius, Fig. 1 
permeability, equation (4) 
effective thermal conduc
tivity of porous medium 
exponent defining the chan
nel geometry, equations (1), 
(2) 

Nu = Nusselt number, equation 
(13) 
pressure 
Prandtl number = v/ae 

radial coordinate, Fig. 1 
channel cross section 
temperature 
average temperature = 
(J PuTdS)/pVS 
horizontal velocity 
component 
average velocity = 
(\udS)/S 
horizontal Cartesian coor
dinate, Fig. 1 
vertical Cartesian coor
dinate, Fig. 1 

(Ay)j - size of they'th mesh interval 
in y 

ae = effective thermal diffusivity 
of porous medium 

P 
Pr 

r 
S 
T 

T 

V = 

y = 

y = constant in the relation for 
the compound interest grid 

•q = similarity variable, equation 
(10) 

(At])j = size of they'th mesh interval 
in 7] 

9 = dimensionless temperature 
6,„ = invariant temperature = 

(Tw - T)/(TW - Tm) 
X, = constants in equation (3) 
H = viscosity 
v = kinematic viscosity 
p = density 
4> = porosity, equation (3) 

Subscripts 
pertaining to the channel 
inlet 
pertaining to the wall 
denoting dimensionless 
quantity 
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the effect of channeling on porous media heat transfer (see, 
for example, [8, 9, 16]). 

To obtain the temperature field from equation (1), 
knowledge of the velocity distribution is necessary. The fully 
developed velocity field is described by the x-momentum 
equation 

1 dP 1 d r du 1 v 
0= ^ + v - r ^ r m ^-—--u-A(yW (2) 

dP 1 
—-—+v 

p dx rm dy L dy K(y) 

In the above equation, A is an empirical function which 
depends on the structure of the porous medium. It is worth 
noting that the term multiplied by A in equation (2) was first 
introduced by Forchheimer in an empirical manner for the 
special case of one-dimensional flows through porous media, 
in order to account for inertial effects [1]. Similarly, the sec
ond term on the right-hand side of equation (2) accounts for 
friction due to macroscopic shear and was introduced first by 
Brinkman [1, 3] again in an heuristic manner. Both the 
Brinkman term and the Forchheimer term in the momentum 
equation for porous media flows were derived rigorously in 
later studies, exemplified by [17], which relied on the for
malism of volumetric averaging along with physically accep
table assumptions. 

The porosity of the matrix is assumed to be dependent on 
location to account for the high porosity regions near the walls 
(porosity variations in the horizontal are neglected). It has 
been shown [6-9, 16] that for a bed of randomly well-packed 
spheres, the porosity decreases exponentially with the distance 
from a solid wall. The most commonly used equation for this 
exponential variation is [6-9, 16] 

</> = 0oo[l + A,e-x2>'A'] (3) 

where $ is the porosity, d is the sphere diameter and X, and X2 

are constants depending on the sphere diameter. In the present 
study, the results will be illustrated by using spheres 3 mm and 
5 mm in diameter. These sphere sizes are commonly used in 
laboratory experiments. We believe that using other bead 
diameters of comparable size will not alter the results 
qualitatively. An indication for the quantitative effect that the 
bead size has on the results will be revealed by comparing the 
results for t?=3 mm to the results for d=5 mm. Reliable ex
perimental values for the constants in the porosity equation (3) 
exist in the literature for the two bead sizes under investiga
tion. In the case where c?= 3 mm the values of the parameters 
in equation (3) are </>„=0.37, X^O.35, and X2 = 3[6]. For 
d=5 mm, on the other hand, the values 4>o= =0.37, X[ =0.43, 
and X2 = 3 were used [6]. Both the permeability K and 
parameter A in equation (2) depend on the sphere diameter 
and the matrix porosity as follows [23]: 

K= .... .., (4) 

A = 

175(1-0)2 

1.75(1-0) 

tfd 
(5) 

In the momentum equation (2) the buoyancy term has been 
neglected, since the present study deals with forced convection 
in a channel filled with a porous medium. Forced convection is 
a common heat transfer mode in porous media [8, 9, 16]. The 
boundary conditions necessary to complete the problem for
mulation are that the temperature on the channel wall is a con
stant Tw, that the velocity on the wall is zero, and that at the 
centerline both the temperature and the velocity gradients in y 
are zero. Since studying the thermal entry region is of primary 
interest to this investigation, boundary conditions for the 
temperature field at the edge of the thermal boundary layer 
are necessary. The temperature at the edge of the boundary 
layer was kept constant at T; and the temperature gradient 
zero within prescribed error, throughout the extent of the ther

mal entry region. More details on the boundary conditions at 
the edge of the thermal boundary layer will be given in the next 
section. 

Numerical Solution 

The heat and fluid flow characteristics in the configurations 
of interest will be revealed after solving numerically the 
mathematical model outlined in the previous section. Before 
proceeding with the discussion relevant to the numerical solu
tion, it is convenient to cast the governing equations (1) and 
(2) in dimensionless form. The nondimensionalization is car
ried out based on the following definitions: 

u* =u/(v/H), y* =y/H, x* 

r 

HPr 

= l-y* 

•T, 
(6) 

The dimensionless momentum and energy equations are 

1 3-K~) u* + cl(y*)ul=Bc2(y*) + c2(y*)-
r*" dy* 

36 

dx* 

1 d / m dd \ 

dy* V * dy* ) 

(7) 

(8) 

In writing equation (7), relations (4) and (5) were taken into 
account. The definitions of the coefficients B (dimensionless 
pressure gradient) and c,\y*), /= 1, 2 read 

c , ( M = 10-
\-4>' 

B= — 
dP fP 

dx pv2 

c2(y*)=-
dl<f>3 

1 7 5 ( 1 -<t>)2 ( 9 ) 

The spatial variation of porosity </> is given by equation (3). 
Note that since explicit expressions were used to describe the 
variation of porosity and permeability with y for the spherical 
beads, familiar dimensionless parameters (such as the Darcy 
number) often used in theoretical convection studies in porous 
media did not appear in the present dimensionless equations 
(7) and (8). This fact does not restrict the generalization of the 
present formulation. However, our results are tailored to 
describe accurately the phenomenon of forced convection in
side a channel filled with spherical beads. If other types of 
porous matrix are to be studied, the appropriate expressions 
for the porosity, the permeability, and the Forchheimer coeffi
cient need to be used in place of equations (3)-(5) in the 
analysis. In summary, the present model offers a significant 
improvement over other simple models (such as the Darcy 
model or the Darcy-Brinkman model with constant porosity) 
for the case of a matrix consisting of spherical beads. On the 
other hand, simple flow models in which the nature of the 
porous matrix is not taken into account yield (naturally) more 
general, although less accurate, results. 

Since the present study pertains to forced convection, equa
tion (7) can be solved independently to yield the velocity field. 
With this information in hand, the temperature field can be 
obtained from the energy equation (8). 

The momentum equation was solved based on finite dif
ferencing, linearization, and by following an iterative process. 
The finite difference form of the momentum equation was ob
tained by using a variable grid for accurate resolution of the 
important near-wall region. In particular, the so-called "com
pound interest grid" in which each interval is a constant multi
ple of the preceding one ((Ay*)j=y(Ay*)J_l) was used. 
Clearly, y> 1 yields finer resolution of small values of y*. The 
value of 7 = 1.05 yielded accurate results for most runs in the 
present investigation. Both the first and second-order 
derivatives were discretized by using central difference for-
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mulas [19]. Since the Forchheimer term in the momentum 
equation is nonlinear, a linearization process proved 
necessary. To this end, initial values of the velocity field were 
guessed at all the grid points. The nonlinear term was written 
as the product of the unknown velocity and the guessed veloci
ty. In finite difference form, after the above linearization, 
equation (7), together with the boundary conditions, 
transforms into an equivalent tridiagonal set of algebraic 
equations. This set of equations was solved by using Gauss 
elimination [19] to yield the velocity field for one iteration. 
The above process was repeated until convergence was 
achieved within prescribed errors. 

The numerical solution of the energy equation was carried 
out based on an implicit method, namely, the Keller Box 
method [20, 21]. This method has several desirable features 
that make it appropriate for the solution of partial differential 
equations. For example, it provides second-order accuracy 
with nonuniform grids in both the x andy directions, it allows 
for very fast x variations, and allows easy programming for 
the solution of large numbers of coupled equations. One 
problem encountered in the numerical solution of thermally 
developing regions in channels is that near the origin (x=x,)> 
the thermal boundary layer is very thin compared to the chan
nel half-width H. To achieve computational accuracy the 
following similarity variable is introduced [20]: 

(10) 

In terms of r/ the energy equation (8) and the boundary condi
tions read 

di] 
[(i->.r-g-J+(i-j'.)m«. 

--(\-y*)'"u*x* 

V 

2 

dd 

86 

dn] 

dx 

» = 0 at r) = 0, 0=1 at »j=?/ed (12) 

The details of finite differencing a parabolic partial differen
tial equation of the type of equation (11) exist in the numerical 
heat transfer literature (see, for example, [20]). Hence, they 
are not repeated here in the interest of brevity. The final set of 
linear algebraic equations was solved by using the block 
elimination method to yield the temperature field at each x* 
station. The discretization in ij was performed by using a 
variable compound interest grid identical to that used for the 
solution of the momentum equation. The grid size in the x 
direction was very fine near the channel inlet and coarser 
downstream. The reason behind the use of a very fine grid 
near the channel entrance was to be able to capture the steep 
changes in the temperature field near the entrance. In the 
downstream region keeping the same grid would yield pro
hibitively large computation times. Therefore, a coarser grid 
was used downstream. This grid was fine enough to produce 
accurate results while decreasing the computational time. An 
important issue is that of the "numerical" definition of the 
edge of the thermal boundary layer [20]. After a trial and error 
procedure we chose r;edge = 7 - 10 for most of the numerical 
simulations, to start the numerical solution. In addition, the 
values 7=1.05, A T J ^ O . 0 1 yielded initially around 60 grid 
points across the thermal boundary layer. Increasing the 
number of grid points further had no visible effect on the 
numerical results. For example, for 5 = 105, d* =0 .1 , increas
ing the number of grid points in the vertical from 29 to 38 
yielded an increase in the value of the fully developed Nusselt 
number of only 0.8 percent. Increasing the number of vertical 
grid points further to 45 and to 60 left the Nusselt number 
value practically unchanged. The numerical solution of equa
tion (11) started at the wall and proceeded toward the edge of 
the thermal boundary layer. When the edge of the boundary 

layer was reached, the temperature gradient was checked. If 
the temperature gradient was found to be less than 10~4 the 
solution was advanced to the next x station. In the opposite 
situation r;edge was gradually increased until the above 
criterion for the temperature gradient at r/edge was satisfied. 
The value of the temperature at the edge of the boundary layer 
was kept constant at 6=1 according to equation (12) within 
the thermal entry length. When the thickness of the thermal 
boundary layer became equal to the half-width (or radius) of 
the channel the above procedure used to define the edge of the 
boundary layer was abandoned. Instead, for the remaining x 
stations, the temperature gradient at the center line was set 
equal to zero and the temperature at the centerline was 
evaluated numerically much like the temperature at any other 
grid point. 

The local heat flux at the channel wall was also evaluated 
numerically and cast in dimensionless form by means of the 
conduction-referenced Nusselt number. The definition of this 
Nusselt number is based on the channel width (or diameter) D 
and not on the hydraulic diameter. 

Nu= -
V dv / j 

D 

=o T„-Tm 

(13) 

In the above equation, Tm is the mixed mean fluid 
temperature defined in the nomenclature in a manner similar 
to that for classical fluid duct flows. 

The numerical code outlined above was tested against ex
isting results for the Graetz problem in classical fluids (i.e., in 
the absence of the solid matrix) for both configurations of in
terest: the parallel plates and the circular pipe [20-23]. In all 
cases, excellent agreement (within one percent) between our 
findings and those reported in the literature was found. 

(11) Results and Discussion 

In this section, the main results of the numerical simulations 
are reported and discussed. The impact of the "flow channel
ing" phenomenon on the velocity field, caused by the high-
porosity regions near the solid walls, is illustrated in Fig. 2(a) 
for the parallel plate geometry. Clearly, near the duct wall the 
velocity field departs dramatically from its uniform distribu
tion. A channel of fast flowing fluid is thus created in the near 
wall region. The extent of this region is approximately 15 per
cent of the channel half-width for the parametric domain in 
this study. It is reasonable to expect that the channeling 
phenomenon shown in Fig. 2 will affect the heat transfer from 
the fluid to the wall. Increasing the sphere-diameter-to-
channel-half-width ratio, d* = d/H, yields an overall increase 
in the fluid velocity with no other significant qualitative dif
ference. This result makes sense physically: Noting that the 
solid lines in Fig. 2(a) all correspond to d=3 mm, we realize 
that increasing d* is equivalent to decreasing H or the channel 
cross section which, in turn, yields an increase in the fluid 
velocity at all points. Using spheres of diameter d=5 mm 
(dashed line in Fig. 2) resulted in a faster flow in the channel 
compared to the case d=3 mm, for the same value of the 
sphere-diameter-to-channel-half-width ratio, d* =0.1 . 

In Fig. 2(b) the impact of the separate effects included in the 
general flow model on the velocity field is identified. Clearly, 
flow inertia has a negligible impact on the velocity profile for 
B= 105 and tf, = 10~' (d=3 mm). Comparing curves a and c, 
on the other hand, proves that omitting the Brinkman term in 
the momentum equation enhances the channeling 
phenomenon and yields even faster flow near the channel wall. 
This result is correct physically since in the absence of 
Brinkman friction the no-slip condition on the wall is not 
satisfied. Overall, the use of the general flow model takes into 
account several phenomena that significantly alter the velocity 
field predicted by the popular Darcy flow model (Fig. 2b). 
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Fig. 2(a) Velocity distribution across the channel half-width for the 
parallel plate configuration and B = 105 

Fig. 2(b) Relative contribution of the various effects in the general flow 
model on the velocity profile for parallel plates; B = 105, d = 3 mm, 
d* =0.1 

It is worth clarifying that using the present realistic flow 
model removes some of the "arbitrariness" in varying the 
parameters affecting the velocity field. Once the nature of the 
porous matrix is decided upon (spherical beads) the relative 
contributions of the Brinkman term and the Darcy term in 
equation (7) are practically fixed. It is not possible, nor is it 
physically justified to vary arbitrarily the relative contribution 
of these terms and show that the velocity profile changes be
tween the Poiseuille profile (classical fluids, no Darcy terms) 
and the plug profile (Darcy flow no Brinkman terms). In this 
respect, the present velocity profiles differ from those 
reported in the literature [15] obtained with the help of the 
Brinkman flow model with constant porosity. 

Figures 3 and 4 as well as Tables 1 and 2 pertain to a heat 
transfer result of engineering interest, namely, the dependence 
of the thermal entry length on the problem parameters. The 
thermal entry length was defined as the distance between the 
entrance of the channel and the point at which the mixed mean 
(invariant) fluid temperature and the Nusselt number became 
independent of the x location. The dependence of the thermal 
entry length on parameter B (note that in equation (9) this 
parameter is, in effect, the dimensionless pressure gradient) is 

A Parallel Plates d = 3mm 

A Parallel Plates d=5mm 

I O Circular Pipe d = 3mm 

- 9 Circular Pipe d = 5mm 

A 
^7/ 
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Fig. 3 Dependence of the thermal entry length on parameter B for 
d* =0.1 
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Fig. 4 Dependence of the thermal entry length on the sphere-diameter-
to-channel-half-width ratio d* , for B = 105 

linear on the logarithmic graph shown in Fig. 3. Increasing the 
value of B and the bead diameter yielded an increase in ther
mal entry length. This result is correct from a physical stand
point since increasing B and the bead diameter yields faster 
flow in the channel, and therefore thinner thermal boundary 
layers that require a longer distance to develop. The circular 
pipe configuration yielded consistently shorter thermal entry 
lengths than the parallel plates. Similar behavior to what was 
just described in conjunction with parameter B was observed 
when the dependence of the thermal entry length on the 
sphere-diameter-to-half-channel-width ratio (Fig. 4) was in
vestigated. The data points shown in Figs. 3 and 4 were cor
related by the following equations: 

, = I . 8 3 X I O - 6 B 0 - " 

x 

* entry ' 

parallel plates, d= 

«entry = 1 .78xl0- 6 5 

parallel plates, d = 5 mm, 

[entry = 1.03xl0-6£0-98 

circular pipe, d = 3 mm, 

„entry = 1 .02xl0- 6 5 

circular pipe, 

•entry = lO.llfif*' 

parallel plates 

,eritry = 10.29tf|°8 

circular pipe, 

3 mm, d* =0.1 

dt =0.1 

= 0.1 

c?=5mm, d* =0.1 

tf=3mm, 5 = 1 0 5 

r i=3mm, B=105 

(14a) 

(146) 

(15«) 

(156) 

(16) 

(17) 

Figures 5(«, b) exemplify the temperature variation across 
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Table 1 Dependence of the thermal entry length and the Nusselt 
number on parameters B and d* for forced convection in a channel 
between two parallel plates, filled with a porous matrix consisting of 
packed spheres 

B d(mm) d,v x . ,_ Nu 
* " e n t r y 

Table 2 Dependence of the thermal entry length and the Nusselt 
number on parameters B and d* for forced convection in a circular pipe 
filled with a porous matrix consisting of packed spheres 

B d (nun) x * e n t r y Nu 

IO4 

2.5 x IO4 

5 x IO4 

7.5 x IO4 

105 

2.5 x 105 

5 x 105 

7.5 x 105 

106 

2.5 x 106 

5 x 106 

7.5 x 106 

lO? 

105 

105 

105 

105 

io4 

4 
5 x 10 

105 

5 x 105 

io6 

5 x 106 

107 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

5 

5 

5 

5 

5 

5 

5 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.05 

0.075 

0.125 

0.15 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.016 

0.04 

0.08 

0.12 

0.16 

0.4 

0.78 

1.21 

1.56 

3.8 

6.25 

11 

14.5 

0.04 

0.09 

0.22 

0.31 

0.019 

0.098 

0.2 

0.87 

1.78 

8.47 

17.0 

5.57 

5.57 

5.57 

5.57 

5.57 

5.57 

5.57 

5.57 

5.57 

5.57 

5.57 

5.57 

5.57 

5.45 

5.50 

5.60 

5.62 

5.67 

5.67 

5.67 

5.67 

5.67 

5.67 

5.67 

2 

7 

2 

7 

2 

7 

10" 

.5 x 104 

5 x 104 

5 x 104 

105 

5 x 105 

5 x 105 

5 x 105 

106 

5 x 106 

5 x 106 

5 x 106 

10? 

105 

IO5 

io* 

IO5 

io4 

4 
5 x 10 

io5 

5 x 105 

io6 

5 x 106 

107 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

3 

5 

5 

5 

5 

5 

5 

5 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.05 

0.075 

0.125 

0.15 

0.10 

0.10 

0.10 

0.10 

0.10 

0.10 

0.10 

0.009 

0.022 

0.044 

0.065 

0.09 

0.21 

0.42 

0.65 

0.85 

2 

4 

6.4 

8 

0.02 

0.045 

0.135 

0.21 

0.011 

0.058 

0.11. 

0.53 

1.14 

5.11 

8.56 

7.35 

7.35 

7.35 

7.35 

7.35 

7.35 

7.35 

7,35 

7.35 

7.35 

7.35 

7.35 

7.35 

7.00 

7.20 

7.51 

7.66 

7.6 

7.6 

7.6 

7.6 

7.6 

7.6 

7.6 

the channel half-width at several downstream locations for the 
parallel plates and the circular pipe, respectively. The cooling 
effect of the wall propagates faster in the fluid-saturated 
porous medium in the circular pipe than in the parallel plates. 
The invariant temperature distribution in the fully 
developed region is shown in Fig. 6. In the same figure, the 
mixed mean temperature distribution obtained based on the 
Darcy flow model is reported, It is worth noting that since the 
Darcy flow model does not satisfy the no-slip condition on the 
wall and since it assumes constant porosity ($„), it yields a 
uniform (slug) velocity profile. The solution of the Graetz 
problem with a "slug" velocity profile is reported extensively 
in the literature [22, 23]. In both configurations of interest 
(Fig. 1), the general flow model yields a more effective thermal 
communication between the fluid and the solid boundary 
compared to the Darcy model (Fig. 6). The invariant 
temperature in the fully developed region was also found to be 
independent of parameter B. 

Figures 7 and 8 report the variation of the Nusselt number 
along the thermal entry region for a wide range of parameter 

02 04 OS OB 1XJ 02 04 OB 08 W 

Fig. 5 Dimensionless temperature distribution across the channel 
half-width for 8 = 10s, d = 3 mm, d* =0.1: (a) parallel plates; (b) circular 
pipe 
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B. Increasing B (faster flow) yields larger values of Nu 
throughout the thermal entry region. However, it is interesting 
to note that the various curves corresponding to different 
values of B in the thermal entry region converge toward a 

Fig. 6 Mixed mean (invariant) temperature distribution across the 
channel half-width for the fully developed region for B = 105, d = 3 mm, 
d* =0.1; comparison with the predictions of the Darcy model 

single value in the thermally fully developed region. The value 
of Nu in the fully developed region, including the effects of 
Brinkman friction, flow inertia, and variable porosity, is ap
proximately 12 percent higher than the value predicted by the 
Darcy model for the parallel plate geometry (Fig. 7) and 22 
percent higher than the value predicted by the Darcy model for 
the circular pipe geometry (Fig. 8). As indicated in Tables 1 
and 2 increasing the bead diameter to 5 mm has a marginal ef
fect on the value of Nu. 

The next two figures aim to identify the contribution of 
each of the various effects included in the momentum equa
tion (7) on the Nusselt number for the parallel plate channel 
(Fig. 9) and for the circular pipe (Fig. 10). For both channel 
configurations the effect of flow inertia on Nu is negligible for 
B= 105. Excluding the Brinkman friction term (curve c) yields 
a noticeable increase in the value of Nu especially near the 
channel entrance for both configurations of interest. Overall, 
taking into account the variation of porosity in the near-wall 
region, as well as the Brinkman friction, yielded results 
significantly different from the Darcy model (curve d). 

It is expected the flow inertia will have a significant impact 
on the value of Nu at larger values of B (dimensionless 
pressure gradient). Indeed, as Figs. 11 and 12 indicate for the 
parallel plates and the circular pipe, respectively, as B in
creases beyond approximately 5 = 1 0 6 , the inertia terms 

Fig. 7 Nusselt number variation with the horizontal coordinate in the 
thermal entry region for the parallel plate configuration for a host of B 
values, d* =0.1, d = 3 mm 

Fig. 8 Nusselt number variation with the horizontal coordinate in the 
thermal entry region for the circular pipe configuration for a host of B 
values, d* =0.1, d = 3 mm 
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Fig. 9 Nusselt number variation with the horizontal coordinate in the 
thermal entry region for the parallel plate configuration, for four dif
ferent flow models; B = 10s, d * = 0.1, d = 3 mm 

a. Genera l model 

b. General model 

c. General model 

d . Darcy model 

Without Flow 

without Brinkrr 

ner t ia 

an Fr ic t ion 

., 
10 

" I — I I I I 111 . I I 111 

Fig. 10 Nusselt number variation with the horizontal coordinate in the 
thermal entry region for the circular pipe configuration, for four different 
flow models; S = 105, d , = 0.1, d = 3 mm 

00-

1 0 -

1 -

5*- ;^ ^ ^ \ ^ ^ ^ B = i o 8 

1 0 ' 

\10 
a,b 

P ^ 

b 

a. General 

b. General 

model 

model wi hout Flow 

1 

nertia 

100-

1 -

tss^j^ ^ ^ ^ \ ~ ^ ^ - - . B = 

-3 i ' ( l "2 

»• 

• 0 ° 7 

ioe 
b ^ ^ 5 ^ 

a. Gener 

J 

I modcf .„„ 

, - . _ , - „ . , „ . . . », , .u .u , . «_, «,„ Fig. 12 Effect of flow inertia on Nu in the thermal entry region for the 
Fig. 11 Effect of flow inertia on Nu in the thermal entry region for the C | £ u | a r D i D e . d , = 0 1 d = 3mm 
parallel plate channel; d* =0.1, d = 3 mm P H ' parallel plate 

become significant. The effect of increasing the relative con
tribution flow inertia is to decrease the value of Nu, especially 
in the entrance region. The fact that increasing the magnitude 
of Forchheimer inertia decreases Nu has been reported in the 
literature, for example, in [15] for the case of natural convec
tion from a vertical plate in a porous medium. 

Conclusion 
This paper presented a numerical investigation of forced 

convection in a channel filled with a fluid-saturated porous 
material. The temperature at the channel walls was assumed to 
be constant. Two channel configurations were investigated ex
tensively, namely, two parallel plates and a circular pipe. The 
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main novelty of this study lies in the fact that the general 
model for flow in porous medium was used, including the ef
fects of variable porosity, flow inertia, and Brinkman friction. 
A porous bed consisting of packed spheres was used to il
lustrate the results. It was found that the velocity field 
resulting from the solution of the general momentum equation 
(Fig. 2) significantly altered the heat transfer characteristics in 
the system compared to the predictions of the widely used 
Darcy flow model. The "channeling" phenomenon near the 
walls of both duct configurations enhanced the thermal com
munication between the fluid/solid matrix composite and the 
walls. This fact yielded an overall 12 percent increase in the 
value of the Nusselt number in the fully developed region for 
the parallel plate channel, compared to the value predicted 
when the Darcy model was used. Similarly, a 22 percent in
crease in the value of the fully developed Nusselt number for 
the circular channel geometry was observed. The main reason 
for this heat transfer enhancement is attributed to the ex
istence of a high porosity region near the channel wall. As 
discussed in connection with Figs. 11 and 12, increasing 
parameter B beyond approximately B = 106 increases the con
tribution of the inertia terms on the value of Nu. The effect of 
increasing inertia is actually to decrease Nu. The effect of flow 
channeling is even more pronounced when Brinkman friction 
is not taken into account (Figs. 2b, 9, 10). Useful correlations 
reporting the dependence of the thermal entry length on the 
problem parameters were also reported in the course of the 
study. 
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Stability of Thermal Convection in 
a Vertical Porous Layer 
Experiments were carried out to study the stability of thermal convection generated 
in a vertical porous layer by lateral heating in a tall, narrow tank. The porous 
medium, consisting of glass beads, was saturated with distilled water. It was found 
that the flow became unstable at a critical AT of 29.2°C (critical Rayleigh number 
of 66.2). Linear stability analysis was applied to study the effects of the Brinkman 
term and of variable viscosity separately using a quadratic relationship between the 
density and temperature. It was found that with the Brinkman term, no instability 
could occur within the allowable temperature difference across the tank. With the 
effect of variable viscosity included, linear stability theory predicts a critical AT of 
43.4°C [Rayleigh number of 98.3). 

1 Introduction 

Thermal convection in a vertical porous layer has been the 
subject of investigation by a number of researchers. Gill 
(1966) studied the stability of convection generated by a lateral 
temperature difference in an infinite, vertical porous layer. 
Weber (1975) applied a boundary layer analysis to a finite, 
vertical porous layer using the method developed by Gill 
(1966) for convection in a viscous fluid. Bejan (1983) extended 
Weber's analysis to include the uniform heat flux conditions 
of the side walls, and the results were obtained both by 
analytic solution and numerical study. More recently, 
Trevisan and Bejan (1986) considered the problem of mass 
transfer as well as heat transfer in porous vertical layers. Ex
perimental heat transfer characteristics in a rectangular 
porous region with moderate aspect ratio have been in
vestigated by Seki et al. (1978), who obtained a correlation 
between the Nusselt number and the Rayleigh number. Ex
perimental results in a vertical annulus with an aspect ratio of 
nearly one have been reported by Prasad et al. (1985) for a 
number of fluid-solid combinations. 

In this paper, we report the results of experimental in
vestigation and linear stability consideration of thermal con
vection generated in a vertical porous layer by lateral heating. 
The results show that there exists a critical temperature dif
ference, 29.2°C, across the tank beyond which the convective 
flow becomes unstable. 

According to Gill (1969), thermal convection generated by a 
lateral temperature difference in an infinite, vertical layer 
saturated with a constant-property fluid is always stable. 
However, in the laboratory system, there are a number of con
ditions which are different from what Gill had assumed: (i) 
The fluid, being viscous, must satisfy nonslip conditions at the 
wall, (ii) For the temperature range experienced in the experi
ment, the effect of temperature-dependent property values 
may be of importance. (Hi) The height of the layer is finite, (iv) 
The properties of the porous medium may not be constant. 

Using the linear stability theory, we have considered the ef
fects of the first two factors separately for an infinite, vertical 
porous layer. For the effect of the nonslip condition, we used 
Darcy's equation with the Brinkman term included. In the 
variable property case, we assumed that the viscosity is a func
tion of temperature and all other properties are constant. In 
both of these cases, a quadratic relationship between the den
sity and temperature was assumed since a linear relationship 
would incur too much error in the temperature range used in 
the experiment. Results show that with the addition of the 
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Brinkman term, no instability can occur within reasonable 
temperature differences across the tank. For the variable 
viscosity effect, the linear stability analysis shows that the 
onset of instability occurs at AT = 43.4°C. The details of the 
experimental investigation and the linear stability analysis are 
presented within the following sections. 

2 Experimental Investigation 

The experiment was conducted in a tall, narrow box, 30 cm 
high x 2 cm wide x 11.5 cm deep. The two lateral sides (30 
cm x 11.5 cm) of the box were made of milled brass plates in 
which water passages were provided, and the rest of the box 
was made of plexiglass. Two constant-temperature baths were 
used to create a temperature difference across the 2-cm gap: a 
Haake A80 circulator and a Lauda K-2/R circulator. The 
temperature of the water in the baths could be controlled to 
within ±0.02°C of the desired temperature. The hot wall was 
of a sandwich construction with a 1-mm-thick Bakelite sheet 
between two brass plates. Th outer plate was provided with 
water passages and the inner one was a plain brass plate. At 
the midheight of the hot wall, a Microfoil thin foil heat flux 
meter was installed between the outer brass plate and the 
Bakelite sheet. In this manner, the heat flux across the tank 
was monitored. 

On each of the two heat transfer walls, two copper-
constantan thermocouples were installed along the centerline 
very close to the inner surface. One thermocouple was in
stalled 10 cm from the top, and the other at 10 cm from the 
bottom. In all tests, the maximum difference between the two 
readings was less than 0.2°C. Therefore, the average of the 
two readings was taken as the wall temperature. 

The porous medium, consisting of 3-mm-dia glass beads, 
was saturated with distilled water. Before the beads were 
placed into the tank, they were cleaned with detergent. Care 
was taken in filling the tank with distilled water and glass 
beads so that no air bubbles were trapped among the beads. 
After the tank was filled, a plexiglass cover was placed on the 
top of the tank. Then, the entire tank was covered with 
styrofoam insulation approximately 5 cm thick. 

Before starting any experiment, it was first established that 
the porous medium and the walls of the tank were all at the 
ambient temperature. A temperature difference across the 
tank was then established by increasing the temperature of the 
hot wall and reducing the temperature of the cold wall by the 
same amount so that the mean temperature remained at the 
ambient temperature. Property values needed to evaluate the 
Rayleigh number were all determined at the ambient 
temperature. After each new setting of the temperature dif
ference, the wall temperatures and the heat flux were 
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Fig. 1 Heat flux across the porous layer 

monitored in 3- to 5-min intervals until equilibrium was 
reached, which was usually less than 30 min. Re-adjustment of 
the temperature difference was made in 1-hr intervals, approx
imately four diffusion times, to ensure that a steady-state con
dition was obtained. 

A total of six test runs were made and the data are presented 
in Fig. 1, in which the heat flux is shown as a function of the 
temperature difference AT across the tank. Different symbols 
are used for the six different tests. The data show that there is 
a change of slope at 29.2°C, indicating a change in the heat 
transfer process signifying the onset of instabilities. Based on 
our previous measurements of the temperature distribution at 
the center of the tank (Kianjah and Chen, 1982), the convec
tion pattern, after the onset of instabilities, consists of a 
number of cells stacked in the vertical direction. This critical 
A7" of 29.2°C corresponds to a critical Rayleigh number of 
66.2. The definition of the Rayleigh number is given in the 
next section; the property values are evaluated at the reference 
temperature of 25°C. The permeability was measured in a 
cylindrical column 8.15 cm in diameter and 55 cm in height. 
The value of 0.85 x 10~8 m2, as reported by Chen and Mur
ray (1985). The porosity was measured in a graduated cylinder 
6 cm in diameter, and the value is 0.40. 

3 Formulation of the Linear Stability Problem 

3.1 General Equations. The governing equations for a 
porous layer saturated with an incompressible fluid including 

the Brinkman effect and the variable viscosity effect with the 
Boussinesq approximation are 

Continuity: 

Momentum: 

dUj 

dx. (1) 

Po / 9«/ , 
hU: 

e V dt ' dx 

Energy: 

dx-)+irUi-
dp d 

dX: dX: ('-£-) + P8i 

dT dT 
(pc)„, ^ r r + (pc)fUj - — = X„ dt dXj 

d2T 

dXjdXj 

The properties of the medium are defined as follows: 

(pc)m = (l -e) {pc)s + e(pc)f 

(2) 

(3) 

(4) 

The density of the fluid in the body force term is given by Rud-
dick and Shirtcliffe (1979) as 

p = p0U-ai(T-T0)-a2(T-TQf~a3(T-T0y (5) 

in which «! = 2.539 X 10~4, a2 = 4.968 X 1 0 - 6 , a n d a 3 = 
- 2 . 7 X 10"8. 

Based on our knowledge of the instability occurring in a 
viscous fluid confined within a narrow slot (Chen and 
Thangam, 1985; Thangam and Chen, 1986), we assume the 
motion is two dimensional. Let the x axis be horizontal and ex
tend across the narrow gap of the tank, and let the z axis be 
vertical; we denote the velocity components in their respective 
directions by u and w. With the introduction of the stream 
function 

dxjy 

~dY 
dip 

~~dx~ 

the continuity equation is satisfied identically. 
The momentum and energy equations are then rendered 

dimensionless by the following characteristic quantities: 
length L, temperature difference AT, time Z,2(RaK*)~\ 
stream function (Ra/c*)"1, viscosity y.0, density p0 , and 
pressure jt(Ra^0/c*)"'. In these expressions, L is the width of 
the tank, K* = X,„ (pc)f1, and the Rayleigh number is defined 
as 

A, B 

b 

c 
C2, C3 

D 

g 
k 

L 
L 
P 

Ra 

T 

= constants in equation 
(9) 

= constants of viscosity 
model, equation (16) 

= specific heat 
= defined in equation (6a) 
= constants in equation 

(17) 
= gravitational constant 
= permeability of the 

porous medium 
= width of the slot 
= L/k 
= pressure 
= gaxATkL/van* 

= Rayleigh number 
= temperature 

/ = 
u, w = 

x, y, z = 
a — 

« 1 . «2> «3 = 

AT = 

e = 
e = 

K* = 

X = 
/* = 
v = 

P = 

time 
velocity in the x and z 
directions 
coordinates 
wavenumber in the z 
direction 
constants in the density 
function of water 
temperature difference 
across the slot 
porosity 
perturbed temperature 
K/(Pc)f 
heat conductivity 
absolute viscosity 
kinematic viscosity 
density 

a = 

4> = 

+ = 
Subscripts 

b = 
f = 

m = 

0 = 
s = 

Superscripts 
' = 

growth rate of 
disturbance 
perturbed stream 
function 
stream function 

denotes base solution 
denotes fluid property 
denotes property of the 
porous medium 
denotes reference state 
denotes property of 
solid matrix 

perturbed quantity 
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Ra = 
gaiATLk 

The equations can be obtained by substitution and they need 
not be presented here. 

In the following, two speical cases are studied in detail. 
First, we consider the effect of the addition of the Brinkman 
term while the properties of the medium are kept constant . 
Next, we consider the effect of variable viscosity without the 
Brinkman term while all other properties are kept constant . In 
both cases, the density is considered a nonlinear function of 
the temperature. 

3.2 Effect of the Brinkman Term. Eliminating 
pressure term in the momentum equation, we obtain 

the 

R a C [C'^7+C^(- dz dx dx dz 
)]v2^ 

v2 i/<=—T v2(vV)+-
dp 

in which 

C, 

L2 

C, 

dx 
(6) 

(PC),, C, 
eL "o (Pc)f (Pc)m 

It is noted here that C2 and C3 are of order 10~ 4 , and the ef
fect of the inertial terms is negligible. The energy equation 
becomes 

dT d^ dT dji dT 
- + -

1 
v2r (7) 

dt dz dx dx dz 

Due to the inclusion of the Brinkman term, the nonslip condi 
tion at the walls needs to be imposed. Therefore, the ap 
propriate boundary conditions for equations (6) and (7) are 

~aT 

T=±-

3t/< 

~dx 

1 

= 0 \?A x= ± - (8) 

It is reasonable to assume that the basic steady-state solu
tion to equations (6) and (7) subjected to the boundary condi
tions (8) consists of 

u = Q, w = w„(x), T=Tb(x), V ^ v M * ) 

With this assumption, equation (7) becomes a linear, second-
order ordinary differential equation and equation (6) becomes 
a linear, fourth-order ordinary differential equation. The 
solutions are 

T„ 

\l/b=Al cosh Lx+A2 sinh Lx+ £j BjX> 
y'=o 

dx h L sinh Lx + A?L cosh Lx + B, 

+ 2B2x+3B3x
2 + 4B4x

i] 

(9a) 

(9b) 

(9c) 

in which L = L/k and A and B are constants, which are listed 
in the Appendix. In the density-temperature relationship 
given by Ruddick and Shirtcliffe (1979), the value of a 3 is ap
proximately 10~ 2 a 2 . We have used the cubic and the 
quadratic relationships to evaluate the critical conditions for 
the variable viscosity case. The differences are barely discern
ible. In view of this fact, we have carried out all calculations 

Fig 2 Nondimensional vertical velocity: (a) Brinkman term; (6) variable 
viscosity 

assuming a 3 = 0. Using the property values corresponding to 
a reference temperature of 25°C, the basic velocity wb has 
been evaluated and is shown in Fig. 2(a). It is noted here that 
wb is nondimensionalized with respect to R&K*L ~'. Because 
of the quadratic dependence of p on T, the flow is nonsym-
metric. The velocity is higher near the hot wall and becomes 
more so as A71 increases. The viscous effects are confined to 
the regions very close to the two walls. The boundary layer 
thickness in this case is constant and is equal to L~' In (L/2), 
which is proport ional to kW2. 

Linearized stability equations are obtained by introducing 
small perturbations to the basic flow 

^ = ^6 + ^ ' , T=Tb + T 

When these are substituted back into equations (6) and (7) and 
terms of higher order are neglected, we obtain 

dT' diA' d^b dT' 1 

dt dz dx dx Ra 
V 2 7 " (10) 

and 

Ra 
l 2 dt 3 V dz dx3 dx dz •*•)} 

+ V V ' •• -jY V 2 ( V 2 f ) f 
1 dp' 

a, AT dx 
(11) 

Following Thangam and Chen (1986), we introduce the per
turbation temperature and stream function defined as 

T =8(x) exp(iaz + at) 

\p' = 4> (x) exp(/az + at) 

in which a is the wavenumber in the z direction and a is, in 
general, complex. When these are substituted into equations 
(10) and (11), we obtain two ordinary differential equations 
with appropriate boundary conditions. Solution of these equa
tions is effected by using the Galerkin method. The following 
trial functions which satisfy the given boundary conditions are 
employed: 

sin rntx when n is even 

cos n-wx when n is odd 
(12) 

4>„ = 

( c o s h P n x ) _ c o s p n * > t a n h ^ + t a n ^ = Q 

cosh p „ / 2 cos p„/2 2 2 

when n is odd 

Pn sinh pnx sin p„x p„ 
, coth cot — 

sinh p„/2 sin pn/2 2 2 

when n is even 

= 0 
(13) 

The procedure is to expand 
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e = £ f l A and</> = J^b„<t>„ 

in equations (12) and (13), which are then multiplied by 8m and 
4>m, respectively, and integrated from x = — 1/2 to x = 1/2. 
After some algerbraic manipulation, we obtain the following 
eigenvalue problem: 

Ax = oBx = 0 (14) 

with the coefficient vectors = (a,, . . . , a„, . . . , bu . . . , 
b„, . . . ,\T where Tdenotes the transpose. The matrices A 
and B are not presented here because of space limitation!. 
Readers interested in their values are welcome to correspond 
with the authors. 

The numerical solution will be obtained in Section 4 for the 
critical wavenumber and Rayleigh number. Before presenting 
the numerical results, we turn to the formulation of the case 
for variable viscosity. 

3.3 Effect of Variable Viscosity. 
ty equation becomes 

djx d\p dit d\j/ \ 

dz dz dx dx / 

In this case, the vortici-

/xV V+(-

+ C2Ra—- AV = 
1 dp 

(15) 
dt axAT dx 

It is noted here that the nondimensional /x is assumed to be a 
function of temperature only and is given by the equation 

a= (16) 
HoQi+btT&T) 

in which ft, =0.511 x 103 m 2 / ( N - s ) and b2 = 0.248 x 102 

m 2 / ( N - s - °C). They were chosen to give the best fit of the 
viscosity data as given by the NBS (Weast, 1974) in the 
temperature range of 5°C to 45°C. This special functional 
form of tt (T) was chosen so that the basic velocity profile may 
be obtained analytically. 

Since the order of the equations has been reduced due to the 
omission of Brinkman terms, the nonslip condition can no 
longer be entered. Therefore, the appropriate boundary condi
tions are 

u = 0 
Vat x= ± 

1 

The basic steady state can be found to be 

Tb=X 

*b=Y,DjxJ 
y = o 

Wh 
dx jf0 

(17a) 

{lib) 

(17c) 

The constant coefficients Dj are given in the Appendix. 
In Fig. 2(b), the vertical velocity across the layer is shown 

with AT as a parameter. Because of the effect of the variable 
viscosity, the velocity profile is even more asymmetric than in 
the previous case shown in Fig. 2(a). As AT approaches zero, 
the viscosity of the fluid approaches a constant value and the 
velocity profile approaches a straight line. As AT increases, 
the variable viscosity effect augments the effect of the 
quadratic density and temperature relationship in producing a 
velocity profile which is skewed toward the hot wall. By com
paring with Fig. 2(a), we see that at the same AT, the max
imum velocity in this case is larger than the previous case. At 
AT = 40°C, because of the viscosity variations, the location 
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Fig. 3 Marginal stability curves: (a) Brinkman term; (b) variable 
viscosity 

for the maximum downward velocity shifted from the cold 
wall into the interior of the layer. It is conjectured that such 
abnormal behavior of the velocity profile is responsible for the 
growth of instabilities in an infinite vertical porous layer. 

The linear perturbation equation for the stream function is 

/ t 6 v V + / * ' 
cP^b 

dx2 

+ 

d 
+ C2Ra—-2 dt 

dfx' <Hb 

V2i/-' + 
dx dx 

1 dp' 
dx dx a, AT dx 

(18) 

while the temperature perturbation equation remains the same 
as equation (10). It is noted that n' and T' are related by 

/* = -
d\i 

"df r = --
b2AT 

T (19) 
T=rb no&i+biTo + bzATx)2 

Following the same procedure as in Section 3.2 and expanding 
both 6(x) and 4>(x) into sinusoidal functions as in equation 
(12), a similar set of eigenvalue problems can be derived. Both 
eigenvalue problems were solved by truncating the series 
representation for 6 and 4> after convergence had been 
achieved. In both cases, the relative change in the critical 
Rayleigh number from an eight-term expansion to a ten-term 
expansion is 2 percent, and that from a ten-term expansion to 
a twelve-term expansion is 0.2 percent. All results, therefore, 
are obtained with ten-term expansions. 

4 Results and Conclusions 

Th eigenvalue a was determined by using the IMSL 
subroutine EIGCC available at the University of Arizona 
Computer Center. When the real part of a was less than 10"8, 
we considered that the marginal state had been reached. The 
corresponding Rayleigh number for a given wavenumber was 
found. The imaginary part of a was found to be nonzero, thus 
indicating an oscillatory onset. 

The neutral curve for the case with the Brinkman term in
cluded is shown as curve (a) in Fig. 3. It is seen that the critical 
Rayleigh number is 308.0, corresponding to an unrealistic AT 
of 135.9°C. Inertial effect was found to be negligible. Since T0 

is taken to be 25°C, the cold wall would have been at -43°C. 
This means that for the physically reasonable range of 
temperature differences <50°C, no instability can exist. 

The neutral curve for the variable viscosity case is shown as 
curve (b) in Fig. 3, and it is seen that the critical Rayleigh 
number is 98.3, corresponding to a critical AT of 43.4°C at a 
wavenumber of 1.6. It is noted that at this AT the basic flow 
velocity profile shows an inward shift of the maximum 
downward velocity from the boundary wall. The difference in 
the critical Rayleigh numbers between the experiment and the 
theory may be attributed to (a) the finite extent of the ex
perimental apparatus and (b) possible nonuniformity of the 
permeability k in the layer. Convection in a porous layer of 
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finite geometry at high Reynolds numbers has been treated by 
Bejan (1979) and Daniels et al. (1982). However, the effects of 
finite geometry, as well as variable k, on the onset of in
stabilities are difficult to assess at the present time. 

It may be concluded that for a vertical layer of water-
saturated porous medium, the effect of variable viscosity has a 
profound influence on the stability of thermal convection, 
whereas the effect of the nonslip condition at the wall has 
minimal influence on the stability. 
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Hopf Bifurcation in the Double-
Glazing Problem With Conducting 
Boundaries 
Oscillatory convection has been observed in recent experiments in a square, air-filled 
cavity with differentially heated sidewalls and conducting horizontal surfaces. We 
show that the onset of the oscillatory convection occurs at a Hopf bifurcation in the 
steady-state equations for free convection in the Boussinesq approximation. The 
location of the bifurcation point is found by solving an extended system of steady-
state equations. The predicted critical Rayleigh number and frequency at the onset 
of oscillations are in excellent agreement with the values measured recently and with 
those of a time-dependent simulation. Four other Hopf bifurcation points are found 
near the critical point and their presence supports a conjectured resonance between 
traveling waves in the boundary layers and interior gravity waves in the stratified 

1 Introduction 

In recent years there have been many studies of the natural 
convection inside a two-dimensional rectangular cavity with 
differentially heated sidewalls, over wide ranges of aspect 
ratio and Prandtl number. The particular case of steady, 
laminar flow in a square, air-filled cavity with adiabatic 
horizontal surfaces was proposed as a comparison problem by 
Jones (1979). It attracted a large number of contributions and 
these were compared with an accurate "benchmark" solution 
by de Vahl Davis and Jones (1983). This "double-glazing" 
problem, a term which we extend to include the case where the 
horizontal surfaces may be either conducting or adiabatic, is 
an excellent test problem since it is increasingly difficult to ob
tain accurate solutions for increasing Rayleigh number; within 
current computer resources it is possible to obtain a bench
mark solution accurate to within 1 percent at a Rayleigh 
number of 10s, but solutions at 107 are much less reliable. 

As predictions of the double-glazing and related problems 
in free convection are obtained at increasingly higher Rayleigh 
number, it is natural to question the physical reality of the 
solutions. By solving the steady Navier-Stokes and energy 
equations we are able to predict laminar convective flows at 
any Rayleigh number, in principle. Yet all convective flows 
become turbulent at sufficiently high Rayleigh number, and 
many are oscillatory over a range of Rayleigh numbers which 
usually lies between the laminar and turbulent regimes. This 
question of the reality of the steady solutions was addressed 
recently by Briggs and Jones (1985) in an experimental study 
of the double-glazing problem with conducting horizontal sur
faces. They found a transition from steady to oscillatory free 
convection in a square, air-filled cavity at a Rayleigh number 
of 3 x 10s with a simple periodicity of about 0.5 Hz at onset. 
The regime of periodic convection was found to persist to a 
Rayleigh number of at least 1.2 x 107 and there were abrupt 
changes in the frequency of oscillation within this range. The 
flow was observed to be predominantly two dimensional. 

In this paper we show that the behavior observed by Briggs 
and Jones arises as a Hopf bifurcation in the two-dimensional 
steady-state equations for free convection in the Boussinesq 
approximation. We locate several Hopf bifurcation points by 
solving a specific extended system of steady-state equations 
and obtain the critical Rayleigh number and frequency for the 
onset of oscillations. The predicted critical values are in 
reasonable agreement with the measurements of Briggs and 
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Jones. Our approach predicts also the oscillatory flow arising 
at the Hopf bifurcation and we confirm that it has the form of 
traveling waves in the boundary layers. The presence of 
several Hopf bifurcation points at similar Rayleigh numbers 
supports the conjecture of Briggs and Jones that the oscilla
tions are the result of a resonance phenomenon between the 
traveling waves and gravity waves in the stratified interior of 
the cavity. 

We note that the term "double-glazing" problem is also 
used in a related context to describe convection in a cavity of 
large aspect ratio with differentially heated walls, in contrast 
to the square cavity considered here. In future work we in
tend to consider this large-aspect-ratio case also, using 
parameter continuation to trace the variation of the Hopf 
bifurcation with aspect ratio. 

2 Problem Description 

We consider natural convection in a square, air-filled cavity 
with differentially heated sidewalls and conducting horizontal 
surfaces, corresponding to a section of the apparatus of Briggs 
and Jones in which the flow was observed to be predominantly 
two dimensional. We assume that the convection is described 
by the Navier-Stokes and energy equations in the Boussinesq 
approximation and we express these equations in nondimen-
sional form using the following scales: 

• temperature scale ST, the temperature difference between 
the hot and cold sidewalls; 
9 length scale SL, the width of the cavity; 
• velocity scale K/SL , where K is the thermal diffusivity of the 
fluid. 

We obtain the following set of equations for the velocity 
components u and v, the temperature T, and pressure p: 

du du du dp , 
-+u ——+v —— + — PrV 2 u = 0 dt dx dy dx 

(1) 

dv dv dv dp 
-^— + u-—+v^-- + -—— 
dt dx dy dy 

du dv 
- + -—— = 0 dx dy 

PrV 2u = RaPrT (2) 

(3) 

dT 
-+M-

dT 

~~dx -+v -
dT 

— V 2 T = 0 (4) 
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where the Laplacian is defined as 

, d2 d2 

V = 1 
dx2 dy2 

The above equations contain two nondimensional groups, the 
Rayleigh number 

Ra = g&STSi/Kv 

and the Prandtl number 

PT = V/K 

where g is the acceleration due to gravity; /? is the coefficient 
of volumetric expansion; v is the kinematic viscosity; K is the 
thermal diffusivity. Fuller details of the formulation are given 
in Winters (1983). 

The thermal boundary conditions are: 

» T= 1 on the left vertical wall; 
8 T=0 on the right vertical wall; 
• T= 1 — x on the floor and roof, 

where x is the horizontal coordinate with origin at the lower 
left corner. Both horizontal and vertical components of veloc
ity were set to zero on all four walls. 

3 Numerical Techniques 

Steady-state equations are obtained from equations (l)-(4) 
by setting the time derivatives equal to zero. We discretize 
these steady equations using the finite-element method 
(Winters, 1983) and we denote the resulting set of discrete 
equations as 

f(x, X, a) = 0 (xeX) (5) 

where f is a smooth nonlinear function, X is the space of solu
tions x (R" in this case, where n is the number of degrees of 
freedom in the discretization), X is a bifurcation parameter, 
and a is a vector of control parameters. We distinguish the 
bifurcation parameter X from the control parameters a 
because we seek the change of behavior as this parameter is 
varied. In the present problem the Rayleigh number Ra is 
chosen as the bifurcation parameter and we seek the onset of 
oscillatory flow as Ra varies. The control parameters are the 
Prandtl number Pr and the aspect ratio y of the cavity; we fix 
their values at Pr = 0.71 and 7 = 1 . 

We now consider the linear stability of a steady solution x0 

of equation (5) with respect to a small perturbation x,. The 
equation is derived from the time-dependent form 

M—^ + f(x, X, a) = 0 (6) 
at 

where M i s a linear operator on X defined by the time-
derivative terms in equations (l)-(4). The behavior of the per
turbation x, is governed to lowest order by the linear equation 

M ^ ^ + fx(x0, X, a)x,=0 (7) 

Thus, if J is a generalized eigenvector of fx(x0, X, a) with 
eigenvalue a such that 

lxi = oMt (8) 

then the perturbation behaves as 

x,(0 = ee-"{ (9) 

where e is the component of Xj along £ at t = 0. The steady 
solution x0 is linearly stable if all the eigenvalues a have 
Re(a)>0. We note that since fx is real the eigenvalues in equa
tion (8) are either real or else occur in complex conjugate 
pairs. 

As the bifurcation parameter X varies, the linear stability of 
the steady solution x0 changes when one or more eigenvalues 
in equation (8) cross the imaginary axis. Thus there is a critical 

value of X for which Re(a) = 0 and fx is singular; this critical 
value is called a singular or bifurcation point of equation (5). 
Moreover, if a is purely imaginary at the critical point, so that 
<r= ± io>, then equation (5) has a Hopf bifurcation which gives 
rise to periodic solutions of angular frequency u> at the critical 
value of X. 

In the present problem we suppose that the observed 
oscillatory convection arises at a Hopf bifurcation point in the 
steady equations. To confirm this hypothesis we implement a 
technique proposed by Jepson (1981) and Griewank and Red-
dien (1983) for locating Hopf bifurcation points which in
volves the solution of the following extended set of equations: 

f(x, X, a) = 0 

tx(x,\,a)tI-<AMSR=0 (10) 

The functions £R and £ , are the real and imaginary parts of the 
right eigenvector of fx and the last two equations in the set are 
normalization conditions. The solution of these nonlinear 
equations by Newton's method gives successive approxima
tions to x, £R, £7, X, and a> that converge quadratically to their 
values at the Hopf bifurcation point \ = \H. This technique 
has been applied successfully by Winters et al. (1984, 1987) to 
locate the onset of oscillatory convection in a semiconductor 
crystal melt and the onset of vortex shedding in flow past a 
cylinder. 

From the above extended system of equations (10) it is clear 
that we are solving basically a linear stability problem to locate 
the Hopf bifurcation point. However, there are two important 
differences between our approach and the linear stability and 
weakly nonlinear analyses of Busse and others (see review by 
Busse, 1978). Firstly, by solving (10) in a finite-element for
mulation we are able to locate bifurcations in finite regions of 
arbitrary shape and with arbitrary boundary conditions. 
Secondly, in the extended-systems approach the basic govern
ing equations are solved simultaneously with conditions 
satisfied at the singular point; this provides a framework for 
systematically identifying and computing different types of 
singular points of increasing codimension (Jepson and Spence, 
1984). It is the combination of the extended systems approach 
with the finite-element approximation which makes the pres
ent method novel and gives it great generality, allowing for ex
ample the possibility of locating instabilities in much more 
complex configurations than that considered here. Other ap
plications of this approach to different bifurcation problems 
in fluid mechanics and heat transfer are discussed by Winters 
et al. (1984, 1987). 

It is natural in the finite-element method to use a direct 
solver which makes available the Jacobian matrix fx; this is 
particularly appropriate for bifurcation studies where the 
Jacobian can be used for parameter continuation (Keller, 
1977) and for assessing stability (either by monitoring the sign 
of its determinant, which equals (— 1)" where n is the number 
of negative eigenvalues, or by direct calculation of its lowest 
eigenvalues). Against the advantages of the finite-element 
method discussed above we must balance the cost; the method 
is generally slower than finite difference or spectral methods, 
although this did not impede the present investigation in any 
way. The cost of solving the extended system (10) is of the 
order of nine times that of solving the steady equations (5) 
alone, with an appropriate two-step Newton-Raphson 
linearization (Jackson, 1987). 

We note from equation (9) that in the neighborhood of the 
Hopf point the solution is approximately of the form: 

x ( 0 = x0 + e(cos(coO£«-sinM)?/) (11) 
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Fig. 1 Finite-element grid of 24 x 24 nine noded quadrilateral elements 

4000r 

Ob 1 I HO- '-I 1 1 I 
-50 0 50 100 150 200 250 

Real Part 

Fig. 2 Part of the complex eigenvalue spectrum at three critical values 
of the Rayleigh number. Only eigenvalues of positive imaginary part are 
shown. Dashed lines join eigenvalues computed at the same Rayleigh 
number. 

with the amplitude e behaving as VX-XW (Joseph and Sat-
tinger, 1972). We use the relationship (11) to visualize the 
oscillatory flow arising at the Hopf bifurcation with an as
sumed value of e. 

4 Results 

The discretized steady equations (5) and the extended set of 
equations (10) were solved with the ENTWIFE finite-element 
code developed at Harwell. All calculations were carried out 
on a CRAY S-2200. A typical grid consisting of 24 x 24 nine-
noded quadrilateral elements with quadratic interpolation for 
the velocity and temperature and linear discontinuous inter
polation for the pressure is shown in Fig. 1. One 
Newton-Raphson iteration in the solution of the extended set 
of equations (10) required around 45 s of CPU time for this 
grid, and typically four Newton-Raphson iterations were re
quired for convergence. 

The procedure for locating the Hopf bifurcation points was 
as follows. Steady solutions were obtained at Rayleigh 
numbers of 106, 2 x l 0 6 , and 3 x l 0 6 . Then at each of the 
Rayleigh numbers the eigenvalue spectrum of the Jacobian 
matrix was explored. A set of sample points was chosen along 
the imaginary axis and the nearest eigenvalue to each of the 
sample points was found by inverse iteration (Jackson, 1987). 
In this way five distinct complex eigenvalues were found in the 
left half plane at Ra = 3 x 106 and five complex eigenvalues 
were found about to cross the imaginary axis into the left half 
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Table 1 Critical Rayleigh number Ra at the first five Hopf bifurcation 
points for different grids 

Grid 

! 
12x12 

14x14 

16x16 

24x24 

28x28 

32x32 

Ran 

xiir" 

2.0041 

2.0404 : 

2.0986 ; 

2.1102 

2.1092 . 
1 

Ra^ 

xlO"6 

2.0111 

2.0834 

2.1453 

2.1660 

-
-

Ran j 
xlO"6 

2.2015 

2.2124 ; 

2.2678 

2.2799 ; 

-
-

Ran 

xl0~ ' 

2.2568 

2.3869 

2.4525 

2.4989 

-
-

Raps 

xlO"6 

2.4947 

2.5026 

2.5366 

2.5563 

2.5538 

2.5517 

Table 2 Critical angular frequency u at the first five Hopf bifurcation 
points for different grids. The corresponding dimensional frequency is 
WK/S£ rad/s. 

Grid i 

12x12 

14x14 

16x16 

24x24 

28x28 

32x32 

"Vi 

1915.3 

1922.8 J 

1948.9 

1950.0 

1949.4 ! 

j 

wn 

1629.4 \ 

1646.3 ' 

1668.3 

1671.9 

-
-

"'ra ! 

2290.3 | 

2286.5 | 

2317.6 

231S.7 

-

WFA i 

1394.5 j 

1420.7 i 

1439.0 

1448.5 : 

1 

: 

wFi 

2727.7 

2721.0 

2749.5 

2753.0 

2751.4 

2750.4 

plane at Ra = 2 x 106. This indicates that five Hopf bifurca
tions from the steady solution occur for Rayleigh numbers 
between 2x 106 and 3 x 106. The base solution at 2x 106 and 
each of the five eigenvectors were used as the initial guess for 
the solution of the extended system (10) by Newton's method; 
in each case this converged to a distinct Hopf bifurcation 
point. 

Figure 2 shows part of the eigenvalue spectrum at three of 
the critical Rayleigh numbers. Only the eigenvalues of positive 
imaginary part are plotted; each complex eigenvalue has a 
complex conjugate with an equal imaginary part of opposite 
sign. Although the five eigenvalues cross the imaginary axis 
for only a small increase in Rayleigh number, their imaginary 
parts are well separated so that no difficulty was encountered 
in converging the extended system to each of the Hopf points. 
The five eigenvalues show a remarlcable coherence as the 
Rayleigh number changes, and this would seem to indicate 
that their behavior arises from a common physical 
phenomenon. Briggs and Jones have hypothesized that the 
onset of oscillations occurs as a resonance between the travel
ing waves in the boundary layers and internal gravity waves in 
the stratified core of the cavity. We would then expect each of 
the five Hopf bifurcation points to arise from this same 
resonance phenomenon. Since more than one mode is ex
pected in disturbances giving rise to internal gravity waves, 
each mode having a distinct frequency (Turner, 1973), it is 
natural to identify each Hopf point with a resonance between 
the traveling waves in the boundary layers and a particular 
mode of the internal gravity waves. 

A characteristic feature of the numerical study of bifurca
tions is the appearance of spurious bifurcations when the 
discretization of the exact continuum equations is too coarse. 
In view of this we took special care to ensure grid convergence 
of our predicted Hopf bifurcation points. The critical 
Rayleigh numbers and angular frequencies at the Hopf points 
are summarized in Tables 1 and 2 for a series of different 
grids; the notation « x m is used to denote n quadrilateral 
elements in the horizontal direction and m in the vertical direc
tion. We know of no theoretical derivation of the asymptotic 
rate of convergence of Hopf bifurcation points computed 
from discrete equations for decreasing mesh spacing. 
However, for turning points and symmetry-breaking bifurca
tion points Brezzi et al. (1981) have shown that the rate of con
vergence of the predicted critical parameter is the square of the 
rate of convergence of the variables. If the same result holds 
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la ) Streamlines b) Isotherms 

Fig. 3 (a) Streamlines and (b) isotherms for the steady solution and the 
real and imaginary parts of the critical eigenvector at the first Hopf bifur
cation point. Note that the functions plotted have so-called centro-
symmetry on reflection about the horizontal and vertical axes which 
pass through the center of the cavity. 

for Hopf bifurcations then the asymptotic rate of convergence 
of the critical Rayleigh numbers and angular frequencies is ex
pected to be h4, where h is the mesh spacing, for the quadratic 
elements used here (Winters and Cliffe, 1985). 

Although we predict five Hopf bifurcations from the steady 
convective state, only the bifurcation with lowest Rayleigh 
number is physical and marks the transition to oscillatory con
vection. Thus, we predict the onset of oscillations at a 
Rayleigh number of 2.109X 106 which is in reasonable agree
ment with the value of 3 x 106 measured by Briggs and Jones. 
The angular frequency of the oscillations at onset is predicted 
to be 1949.4, based on a frequency scale of K/S\. Since the 
thermal diffusivity K of air is 2.11 x 10"5 at 20°C (Cornwell, 
1977) and the length scale SL is 0.15 m in the experiment, the 
corresponding dimensional frequency is 0.29 Hz at onset, in 
fair accord with the value of around 0.5 Hz quoted by Briggs 
and Jones. Two points should be considered when making this 
comparison. Firstly, the oscillatory flow at the exact point of 
bifurcation has zero amplitude and is not observable; in the 
experiment the value of the Rayleigh number giving rise to 
oscillations of finite amplitude is measured, and this is taken 
to be the threshold value. We have no estimate of the error in
volved in this assumption, although in principle it could be 
found by measuring the amplitude of oscillation as a function 
of Rayleigh number near the threshold and extrapolating back 
to zero amplitude, a technique used in a recent simulation (Le 
Quere and Alziary de Roquefort, 1986). Secondly, a slight 
three dimensionality of the flow in the center midplane was 
observed and this, together with the effect of the lateral 
sidewalls, introduces further uncertainties into the com
parison. 

Very recently, Le Quere and Alziary de Roquefort (1986) 
have simulated the convective flow for the present problem in 
a time-dependent finite-difference calculation. They find that 
the onset of oscillations occurs at a Rayleigh number between 

FIG. 4 (a ) Streamlines. 

FIG. 4(b) Isotherms. 

Fig. 4 (a) Streamlines and (b) isotherms for the steady solution at the 
first Hopf bifurcation point (center plot) compared with one cycle of the 
oscillatory solution arising at the bifurcation (outer plots). The time in
tervals between each plot of the oscillatory solution are equal. 

2x 106 and 2.2 x 10s, in good agreement with our predicted 
critical value of 2.109 x 106. They obtain an angular frequency 
of 1895 at the supercritical Rayleigh number of 2.2 xlO6, 
compared with the present critical frequency of 1949. 

Figure 3 shows the streamlines and isotherms for the steady 
solution and real and imaginary parts of the eigenvector at the 
first Hopf bifurcation point. It is apparent that while the 
boundary layers in temperature and momentum for the base 
solution are narrow, those for the eigenvectors are much 
broader. Thus, the variation of velocity as the periodic con
vection develops will be greater on the centerline side of the 
peak velocity, and this was measured by Briggs and Jones. 

The nature of the oscillatory convection at a Rayleigh 
number near the critical value can be determined from equa-
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tion (11). Figure 4 shows the change in flow and temperature 
distribution during one oscillation with e assumed to be 0.5. 
The flow is represented by streamlines computed from the in
stantaneous velocity field. The instability clearly takes the 
form of traveling waves in the boundary layers adjacent to 
both the vertical and horizontal surfaces. The oscillatory con
vection which arises at the higher (unstable) Hopf points was 
also visualized and found to have a similar form. 

It should be emphasized that once the first complex con
jugate pair of eigenvalues has crossed the imaginary axis then 
the solutions of the steady equations are unstable. The other 
complex pairs which cross the axis at higher Rayleigh number 
correspond to Hopf bifurcations from the (now unstable) 
steady solution branch to unstable periodic orbits, regardless 
of whether they branch sub- or supercritically from the steady 
solution. Thus, only the first bifurcated solution can be stable. 
We note that the time-dependent simulation of Le Quere and 
Alziary de Roquefort (1986) indicates that this bifurcation is 
supercritical, but we are unable to verify this at present. 

Briggs and Jones found in their experiment that as the 
Rayleigh number increases above its critical value for periodic 
convection there are abrupt changes in the frequency of 
oscillation up to Ra = 1.2 X 107, but only a single frequency is 
ever observed at a particular Rayleigh number. It is tempting 
to identify this behavior with the existence of the four Hopf 
bifurcations from the unstable steady solution branch, since 
each of the bifurcations gives rise to a distinct frequency of 
oscillation. It is conceivable that a transition from steady flow 
to an unstable periodic orbit of one of these higher Hopf 
points might be observed in the experiment, but only if the 
time scale for the development of the instability is much 
greater than the observation time. This time scale is deter
mined by the magnitude of the real part of the eigenvalue and 
at a Rayleigh number of 3 X 106 it is typically less than 10 s for 
the four higher Hopf points, which is far smaller than the 
observation time of more than half an hour. It is more likely 
that the distinct frequencies observed by Briggs and Jones are 
the result of some interaction, not yet understood, between the 
periodic orbits arising at the different Hopf points. This could 
be verified by continuation of each of the periodic orbits, but 
the techniques required are beyond the scope of the present 
paper. 

5 Conclusions 

We have applied a technique for locating Hopf bifurcations 
in steady-state equations to the problem of free convective 
flow in a square, air-filled cavity in the Boussinesq approxima
tion, and we have found five bifurcation points at similar 
Rayleigh number. The lowest point corresponds to the loss of 
stability of steady solutions and the development of time-
periodic behavior, and we predict a critical Rayleigh number 
and frequency for the onset of oscillatory convection in 
reasonable agreement with the measurements of Briggs and 
Jones (1985). 

We note that the present technique locates the onset of in
stability exactly, unlike transient studies where there may be 
considerable uncertainty in distinguishing true oscillatory 
behavior from transient oscillations which tend to a steady 
state over a long time scale. A further advantage of the present 

approach is that, having located a bifurcation point for a par
ticular set of control parameters a, we can obtain by 
parameter continuation the variation of the critical Rayleigh 
number as one or more of the control parameters vary. In this 
way the onset of oscillatory convection can be predicted as 
both the Prandtl number and aspect ratio change. As an exten
sion of this approach we can introduce a homotopy parameter 
into the boundary conditions to study the effect of insulating 
rather than conducting surfaces on the instability. 
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Natural Convection in a Vertical 
Annulus Containing Water Near 
the Density Maximum:-' 
Steady natural convection of water near the density extremum in a vertical annulus 
is studied numerically. Results for flow in annuli with aspect ratio 7 < A < 5 a n d 
varying degrees of curvature are given for 103 < Ra < 10s. It is shown that both the 
density distribution parameter R and the annulus curvature K have a strong effect 
on the steady flow structure and heat transfer in the annulus. A closed-form solution 
for the vertical flow in a very tall annulus is compared with numerical results for 
finite-aspect-ratio annuli. 

Introduction 

Most studies of natural convection in enclosures concern 
fluids for which density decreases roughly linearly with in
creasing temperature. This linear behavior gives rise to the 
second part of the Boussinesq approximation. For a number 
of fluids, however, such as water, molten bismuth, antimony, 
gallium and tellurium (Grant, 1968; Lankford and Bejan, 
1986) the density-temperature relationship exhibits an ex
tremum. For water, this density maximum occurs at about 
4°C at atmospheric pressure. A number of experimental and 
analytical studies have been carried out for the steady natural 
convection of water near 4°C in a rectangular enclosure with 
vertical walls maintained at two different temperatures while 
the horizontal walls are adiabatic. Watson (1972) seems to 
have been the first to investigate natural convection in a dif
ferentially heated enclosure filled with cold water. It was 
found that the anomalous density-temperature relationship 
may result in a dual, counterrotating cell flow pattern which 
significantly inhibits cross-cavity heat transfer such that the 
Nusselt number attains a minimum when the two convective 
cells are of the same size. The effect of temperature-dependent 
viscosity was also addressed and was found to result in 
changes in magnitude rather than in the character of the flow. 
Seki et al. (1978) carried out experimental and numerical work 
on a cold water-filled rectangular enclosure with a height of 
100 mm. Aspect ratios of 1, 2, 5, 10, and 20 were considered. 
It was found that aspect ratios near unity resulted in the max
imum heat transfer. Inaba and Fukuda (1984a, b) investigated 
the effect of inclination angle on the natural convection of 
cold water in a rectangular enclosure both experimentally and 
numerically. Discrepancies between numerical and experimen
tal results were observed for hot wall temperatures in excess of 
8°C for some inclination angles. These differences were at
tributed to imperfect thermal boundary conditions in the ex
periment and to incipient transition to three-dimensional 
behavior in the experiment. The inclination angle was found 
to affect the rate of heat transfer differently depending on the 
relationship between the wall temperatures and the extremum 
temperature. Very recently, Nansteel et al. (1987) used a per
turbation technique to study the natural convection of cold 
water in a rectangular enclosure for small Rayleigh number. 
Additional work for rectangular enclosures containing cold 
water has been carried out by Desai and Forbes (1971), 
Robillard and Vasseur (1981, 1982), Poulikakos (1984), 
Forbes and Cooper (1975), Vasseur and Robillard (1980), 
Blake et al. (1984), and Lin and Nansteel (1987). 

The investigations discussed above addressed the convection 
of cold water in rectangular enclosures. However, natural con-
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vection heat transfer in annular passages is encountered in a 
variety of engineering situations including heat exchangers, 
the food industry, biomedical applications, and nuclear reac
tors. The natural convection of water in the annular space be
tween two horizontal cylinders with density inversion has also 
been studied. Seki et al. (1975) experimentally and numerically 
studied flow patterns and heat transfer for cold water con
fined between two horizontal cylinders with a radius ratio K 
(outer radius/inner radius) in the range 1.18<A"<6.39, with 
the temperature of the outer cylinder varying from 1 to 15°C 
while the inner cylinder was maintained at 0°C. Nguyen et al. 
(1982) examined the same problem for K = 2 for small 
Rayleigh numbers using a perturbation technique. As in the 
rectangular enclosure, it was found that density inversion may 
result in a dual-cell flow pattern which prohibits fluid in a 
given convective cell from simultaneously contacting both the 
heated and cooled surfaces and hence limits heat transfer. 

Buoyancy-induced flow in vertical annular passages has 
received relatively little attention. What is known about 
Boussinesq fluid convection is due to the numerical work of 
Schwab and DeWitt (1970), de Vahl Davis and Thomas 
(1969), Thomas and de Vahl Davis (1970), and Lee et al. 
(1982). Most of the results reported in these investigations are 
for tall annuli only, de Vahl Davis and Thomas (1969) and 
Thomas and de Vahl Davis (1970) studied free convection in a 
differentially heated vertical annulus with upper and lower 
horizontal surfaces insulated. They considered a wide range of 
parameters: 1 0 2 < R a < 2 x 10s, 0 . 5 < P r < 1 0 \ 1< ,4<33 , and 
1 < K < 10. The aspect ratio A is the ratio of the annulus height 
H to the gap width D. The majority of the results were for 
P r = l and \<K<4. Their results indicate that the 
temperature and velocity fields, and consequently heat 
transfer rate, are not only functions of Ra and A, but strongly 
depend on the radius ratio. They classified the flow regimes as 
being either conduction, transition, or boundary layer using 
the horizontal temperature gradient at the annulus midplane 
as a criterion. Thomas and de Vahl Davis (1970) have also 
reported multicellular flow behavior depending on the 
Rayleigh number and aspect ratio. The numerical heat 
transfer results of Schwab and DeWitt (1970) are not in agree
ment with the findings of Thomas and de Vahl Davis (1970). 
The reason for this discrepancy is not clear although the 
numerical methods used are essentially the same; Keyhani et 
al. (1983) conducted experiments for the case when a constant 
heat flux is applied on the inner wall of the annulus with air 
and helium as test fluids for K= 4.33 and A = 2.76 for a wide 
range of Rayleigh numbers. They reported that in the conduc
tion regime the heat transfer rate for a constant flux boundary 
condition is 10 percent higher than for the isothermal case. 
Recently, Prasad and Kulacki (1985) performed experiments 
with a liquid-filled vertical annulus for K= 5.338, aspect ratio 
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/I =0.5, 1, and 1.5, and 8x 1 0 6 < R a < 3 x 1010. Water and 
ethylene glycol were used as the working fluids. Other in
vestigations of Boussinesq convection in vertical annuii in
clude the work of Shaaban and Osizik (1982), Hanzawa and 
Kato (1984), and Bhushan et al. (1983). It appears to the 
present authors that no work has been done on the convection 
in a vertical annulus with cold water effects. 

The objective here is systematically to investigate the effects 
of density inversion, curvature, and aspect ratio on the steady 
natural convection of cold water in a vertical annulus. Because 
the effects of density inversion, in the absence of curvature, 
have been discussed elsewhere, the primary emphasis here will 
be on curvature and its consequences with respect to the flow 
structure and heat transfer in the annulus. 

Formulation 

Consider the cold water-filled annular region of height H, 
and inner and outer radii r; and f0, respectively (gap width 
= f0 — f, = D) shown in Fig. 1. The outer wall is at temperature 
fc and the inner wall is maintained at temperature fh > fc 

while the horizontal surfaces are insulated. Assuming that the 
flow in the gap is laminar and axisymmetric, and all fluid 
properties are constant except for density in the buoyancy 
term of the vertical momentum balance, the governing equa
tions for conservation of mass, momentum, and energy in the 
annulus expressed in unsteady form are 

d(fu) d(fv) 

df 

Du 

Dt 

Dv 

Dt 

1 dp' 

df 

dp' 

-+x. 

dz 

d2u 1 
- + — 

(1) 

dz 

dr2 r 

d2v 

du d2u 
- + • 

dr 

1 

dz2 

dv 

dr1 

DT 

Dt 
--oic{-d

2t 1 
~dlr+~F 

dT 

df 

d2T\ 

it \ 

dz2) ( 3 ) 

d2V 

df dz2 (4) 

where viscous dissipation has been neglected and properties 
have been evaluated at the cold wall temperature. Conditions 
on the boundary are 

ii = v = 0 

T{fhz)=Th, 

df 
dz 

dT 
if,0) = -—(f,H) 

dz 

T(f0,z)=Tc 

= 0 

In the past, many correlations have been proposed to repre
sent the density of cold water as a function of temperature 
such as rational function (see Kell, 1967; Seki et al., 1978) and 
polynomial approximation (see Watson, 1972). Other correla
tions include Chen and Millero (1976), Poulikakos (1984), and 
Gebhart and Mollendorf (1977). Although most of these cor
relations are in close agreement, the relation from Gebhart 
and Mollendorf will be used here due to its high precision and 
simple form. The density of pure water at atmospheric 
pressure is given as (Gebhart and Mollendorf, 1977) 

p = p m [ l - « 1 l f - f m | 9 ] (5) 

where Tm =4.029325°C is the temperature corresponding to 
the density maximum, pm = 999.9720 kg/m3, a{ = 9.297173 
x 10~6 °C-i and 9 = 1.894816. 

Defining the modified pressure p=p' +pcgz, introducing 
equation (5) and the nondimensional variables 

f—f 
z = z/D, u = uD/vc, v = vD/vc D 

t=vJ/D2, p--
pD2 

pcv
2 

equations (l)-(4) become 

>=(f-fc) / (7Vfc) 

s-

z 
\ Th 

Fig. 1 Vertical annulus, coordinate system, and thermal boundary 
conditions 

Nomenclature 

A 
D 
g 

H 
k 
K 

Nu 

P 
P' 
Pr 

q = 

aspect ratio = H/D 
gap width 
gravitational acceleration 
annulus height 
thermal conductivity 
radius ratio = f0/fl 

Nusselt number 
= q"D/k(Th-Tc) 
dimensionless pressure 
= pD2/Pcv

2 

modified pressure = p' + pcgz 
pressure 
Prandtl number = vc/ac 

constant in equation (5) 
heat flux 
dimensionless radial coordinate 
= (r-r,)/D 

r 
R 

,a 

t 
I 

T 
u 

u 
V 

V 

z 

= radial coordinate 
= density distribution parameter 

= {Tm-Tc)/(Th-
= Rayleigh number 

Tc) 

= gPmot,(Th-Tc)iD
i/pcvcac 

= dimensionless time = 
= time 
= temperature 
= dimensionless radial 

velocity = uD/vc 
= radial velocity 
= dimensionless axial 

velocity = vD/vc 

= axial velocity 
= dimensionless axial 

coordinate = z/D 

-- vcl/D
2 

z = axial coordinate 
a = thermal diffusivity 

al = constant in equation (5) 
v = kinematic viscosity 
J = dimensionless vorticity 
p = density 
<j> = dimensionless temperature 

= (T-Tc)/(Th-Tc) 
ip = dimensionless stream functi 

Subscripts 
c = cold wall 
h = hot wall 
/ = inner wall 

m = extremum temperature 
o = outer wall 
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Table 1 Convergence of heat transfer and \f> with mesh size: 
R = 1/2, K= 2,A = 1 

Ra Mesh Nu ; Nu„ KNu„ K 
103 

104 

I05 

106 

21*21 

21*21 
31*31 
41*41 

21*21 
31*31 
41*41 

21*21 
31*31 
41*41 
61*61 

1.446 

1.738 
1.740 
1.738 

3.551 
3.518 
3.521 

10.858 
8.408 
7.420 
7.136 

0.723 

0.868 
0.870 
0.871 

1.806 
1.763 
1.762 

4.670 
3.815 
3.682 
3.543 

1.446 

1.736 
1.740 
1.742 

3.612 
3.526 
3.524 

9.340 
7.630 
7.364 
7.086 

0.0304 

0.282 
0.281 
0.281 

0.997 
0.997 
0.998 

2.238 
2.077 
2.048 
2.043 

du d, (K-l) 
- + -TT-+ . . . , , . U = 0 

Du 

Dt 

Dv 

Dt 

dr dz (K- l)r+1 

dp d2u (K-l) du d2u 

~~dr~ dr2 (K-l)r+l ~l)rr + ~dzT' 

(6) 

l(K-l)r+ll {K-l), 

dp Ra r l , d2v 

(7) 

dz Pr dr2 

iK-l) dv 

(K-l)r+l dr 

d2v 

dz2 

D<j) 

~DT 

where 

Pr L 

d2</> 

dr2 ' (K-l)r+l dr 

(K-1) 3(4 d2<t> 

dz2 

(8) 

(9) 

u = v = 0, on the boundary 

<4(0,z)=l, *( l ,z) = 0 

d<f> , m 3(4 

dz 
-(/-, o) = 

dz 
(r,A) = 0 

Additional parameters appearing in equations (6)-(9) are 
the radius ratio K = r0/rh which characterizes the degree of 
curvature, the Prandtl number Pr = i>c/ac, the aspect ratio 
A =H/D, the Rayleigh number 

Ra = 
gpmal(Th-Tc)'>Dii 

pcvcac 

and the density distribution parameter 

f —T R-
•T 

which fixes the orientation of the maximum density 
temperature with respect to the wall temperatures f k and Tc 

(see also Gebhart and Mollendorf, 1978; Nansteel et al., 
1987). Note that the case R = \/2 corresponds to the cir
cumstance in which the hot and cold wall temperatures 
perfectly straddle the maximum density temperature. For 
values of R in the range 0 < R < 1, water density in the annulus 
increases with increasing temperature to a maximum p = pm at 

and then decreases with any further increase in T=f 
temperature. On the other hand R = 0 corresponds to the case 
in which the cold wall is at temperature fm so that fluid den
sity decreases monotonically with temperature everywhere in 
the annulus. In the instance R = 0 flow in the annulus is similar 
to the flow of a Boussinesq fluid but only in a qualitative sense 
since density is a nonlinear function of temperature. When 
R=l the hot wall is at the maximum density temperature so 
density increases monotonically with temperature everywhere 
•n the annulus. 

Eliminating/? between equations (7) and (8) and introducing 
the vorticity £ 

dv du 

dr dz 

and the stream function t/< 

(K-l) 3i£ (K-l) d^ 

f = 

u = -(K-l)r+l dz (K-l)r+l dr 

yields 

Dt 

dH 

(K-l) 

(K-l)r+l 

, 92* . 

Ra 
uH=—q\4>-R\i-H<l>-R) 

(K-l) 

5(4 

~dT 

9? 
dr2 

with 

f= — 

dz2 (K-l)r+l dr l(K-l)r+l\ -[-
K-l 

1 a2^ d2^ (K-1) dxP 

Hio) 

( i i ) (K-l)r+l\dr2 dz2 (K-l)r+l dr 

Note that in the case of a vanishingly small annular gap (i.e., 
vanishingly small curvature effects) K-~ 1 and the above equa
tions reduce to those appropriate for a cold water-filled rec
tangular enclosure with differentially heated vertical walls and 
adiabatic horizontal surfaces (see Lin and Nansteel, 1987). 
The Nusselt numbers at the inner and outer wall are given by 

q'{D f» 30 
Nu,-=-

Nu„=-

k(Th-Tc) dr 

3(4 

(0, z)dz 

(1, z)dz 
k(Th-Tc) Jo 3r 

Also, since the areas for heat transfer at the outer and inner 
walls are in the ratio K, under steady conditions, 

Nu,= #Nu 0 (12) 

Numerical results were obtained by solving equations 
(9)-(ll) subject to the accompanying boundary conditions by 
a finite difference method. A false-transient approach was 
used to obtain steady-state solutions. First-order forward dif
ferences were used to approximate time derivatives while cen
tral difference approximations were used for spatial 
derivatives. The resulting set of algebraic equations was solved 
by the Alternating Direction Implicit (ADI) technique, which 
yields a system of algebraic equations in tridiagonal form to 
which the Thomas algorithm (Householder, 1979) can be ap
plied. Results for the lowest Rayleigh number considered 
(Ra=103) were obtained from a rest initial condition 
(\p = i; = u = v = 0, (4=1/2). For higher values of Ra, the steady 
solution for a somewhat smaller Rayleigh number was used as 
the initial state. In this way, computation time is minimized 
and stability criteria are somewhat relaxed. It is also noted 
that the steady-state solution was found to be independent of 
the choice of initial condition. For each case (Ra, K, R, A) 
mesh refinement was continued until adequate pointwise con
vergence was observed in i£, £, and <t>, as well as convergence 
of global heat transfer. The mesh size required for satisfactory 
convergence was found to be strongly dependent on Ra, as 
shown in Table 1, for the case R = 1/2, K=2, and A = l. All 
results were obtained with P r= 13.0. 

Results and Discussion 

Flow Structure. The two most important parameters in
fluencing the structure of the flow in the vertical annulus are 
the density distribution parameter R and the radius ratio K. 
First, the effect of R in the absence of curvature (K=l) will be 
briefly discussed. Figure 2 shows contour values of ^ and (4 for 
a unit-aspect-ratio annulus in the case Ra=10 5 , K=l, and 
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Fig. 2(a) R = 0.4 

Fig. 2(d) R = 1,0 

Fig. 2 Stream function (<p x 103) and temperature (<j> = 0(0.1)1) contours 
for the unit-aspect-ratio (4 = 1) vertical annuius with no curvature, K = 1-
Ra = 10s 

R = 0A, 0.5, 0.55, and" 1.0.'.In Fig..'2(a), # = 0.4, the two 
counterrotating cells are separated, roughly, by the maximum 
density isotherm <f>=R = 0A. In the small counterclockwise 
rotating cell in the lower right-hand quadrant of Fig. 2(a) 
relatively light fluid ascends adjacent to the cold wall while 
fluid of maximum density T= fm, </> = i? falls near the line of 
demarcation between the two cells. In Fig. 2{b), # = 1 / 2 , the 
hot and cold wall temperatures perfectly straddle the ex-
tremum temperature; hence, rela-ively light fluid rises adja
cent to the heated and ccoled walls, while dense fluid p — pm, 

' in Figs. 2-4 the notation # = 0(0.1)1 indicates that contours of <t> are plotted 
for nine equally spaced values of 4> between zero and unity. 

Fig. 3(a) K = 2 

Fig. 3(b) K = 4 

Fig. 3(c) K = 8 

Fig. 3 Stream function (f x 103) and temperature (0 - 0(0.1)1) contours 
for the unit-aspect-ratio annuius: R = 0.4, Ra = 10s 

T— f,„ falls near the enclosure vertical midplane in a sym
metric dual-cell pattern. In Fig. 2(c), # = 0.55, the 
counterclockwise rotating cell near the cold wall has grown 
substantially in size and strength (compared with the case 
R= 1/2) at the expense of the clockwise rotating cell near the 
hot wall. In the case R = 1 (Fig. 2d) the maximum density 
temperature f„, = Th so that density increases with temper
ature everywhere in the enclosure resulting in a single 
counterclockwise vortex. This flow pattern is qualitatively 
similar to the convection of a Boussinesq fluid except for the 
sense of circulation. Evidently the size and orientation of the 
cell(s) in the enclosure with K= 1 (corresponding to a vertical 
rectangular enclosure) are critically dependent upon the rela
tionship between the wall temperatures and f,„ (i.e., the 
parameter R = (T,„ - Tc)/( fh - fc)). It has been shown (Lin 
and Nansteel, 1987) that Ra has a relatively minor influence 
on the cell structure. 

It will be seen that curvature also may have a profound ef
fect on the resulting flow structure in the annuius. Recall that 
under steady-state conditions conservation of energy requires 
the average heat flux at the inner wall to be;a factor K times 
the average flux at the outer wall (equation (12)), This is due to 
the smaller area available for heat transfer at the inner wall. 
As a result, with increasing K, isotherms will become increas-
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Fig. 4(a) A = 1 

Fig. 4(b) A = 2 

ingly crowded near the inner cylinder. The resulting effect on 
the 4> and <l> fields is shown in Fig. 3 again for A = 1 for the 
case i? = 0.4, Ra=10 5 . Note that increasing curvature (K) 
tends to shift isotherms (including the maximum density 
isotherm) toward the inner cylinder. As maximum density 
fluid shifts toward the inner cylinder so does the line of demar
cation between the outer counterclockwise-rotating cell and 
the inner clockwise-rotating cell. Hence for fixed wall 
temperature (fixed R) the outer cell strengthens and the inner 
cell weakens with increasing curvature of the annulus. Note 
(Figs. 2 and 3) that increasing the curvature from K= 1 to 
# = 8 has resulted in a complete reversal in the relative size of 
the two cells. Also, from Fig. 3, fluid in the upper portion of 
the annulus is becoming more nearly isothermal \ t~ Tc) as K 
increases. In general, it is observed that increasing curvature 
increases the size and strength of the outer cell. 

Figure 4 shows contours of \[/ and </> for tall enclosures 
(A > 1) for the case K=2,R = 1/2, and Ra= 10". Note that in
creasing aspect ratio tends to increase the convective intensity 
of the large outer cell. This is because the quenching effect of 
the unheated horizontal surfaces becomes less as A is in
creased. Also, the temperature field becomes dominated by 
conduction over much of the vertical span of the annulus 
when /I > 4 (Fig. 4). Only near the top of the annulus where 
the counterclockwise outer cell sweeps cool fluid from the 
outer wall onto the heated inner wall does the contribution of 
convection become significant. A similar phenomenon is not 
observed near the bottom of the annular space since the dual-
cell structure there precludes contact of the inner cell with the 
outer, cooled wall. The flow structure in the central portion 
(i.e., away from the horizontal end walls) of the vertical an
nulus with A — 8 is already reasonably well approximated by 
the flow in an infinitely tall {A — <») annulus. An expression 
for the vertical velocity in an infinitely tall annulus is given in 
Appendix A. Figure 5 shows vertical velocity profiles at the 
annulus midheight, z=A/2, for Ra= 104, R = 1/2, and A =2 , 

Fig. 4(c) A = 4 

-20 

Fig. 4(d) 4 = 8 

Fig. 4 Stream (unction (\fi x 103) and temperature (<(> = 0(0.1)1) contours 
* - - . - I I t l . n n T- >, n n _ . n 4 for tall annuli: fl = 0.5, K = 2, Ra = 10 

4, 8, and o°. For R=l/2 the finite aspect ratio results ap
proach the A — oo results quite rapidly with increasing A. This 
is probably due to the dual-cell structure which makes the 
"apparent" aspect ratio of each of the cells larger than if a 
single cell occupied the annulus. 

Heat Transfer. The variation of heat transfer at the inner 
wall, Nu,, with K for R = 0A, A = l, and 10 3<Ra<10 5 is 
shown in Fig. 6. Recall (Fig. 3) that .# = 0.4 leads to a transi
tion from inner to outer cell dominance as curvature of the an
nulus is increased. This transition occurs in the range 2-&K-&5 
for 103 < R a < 105. Hence in this approximate range there is a 
smooth transition from a circumstance in which the inner 
(clockwise-rotating) cell wets both walls of the annulus to one 
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Fig. 5 Vertical velocity at the annuius midheight (z = AI2): R = 0.5, K = 2, 
Ra = 104 
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Fig. 7 Heat transfer at the inner wall relative to conduction, 
Nu,/(Nu,)cond:fl = 0.4,/l = 1 

in which the outer (counterclockwise-rotating) cell wets both 
walls. Over much of this range of K then, the cells are of 
roughly equal strength and the inner cell is effectively in
sulated from the outer wall by the outer cell and vice versa. 
This in turn leads to a diminished rate of convective heat 
transfer from the inner to the outer wall. In Fig. 6 this results 
not in a minimum heat transfer rate near K=3.5 but only a 
minimum rate of increase of Nu, with K since conduction heat 
transfer increases quite rapidly with increasing K. It is easily 
shown that 

(Nu,)cond = 
K-\ 

log(#) 
(13) 

Hence two mechanisms are involved in affecting the 
magnitude of Nu ;. One is curvature which results in a 
"bunching-up" of isotherms near the inner (hot) wall and 
always tends to increase Nu, as K increases. The second 
mechanism is due to the configuration of the two counter-
rotating cells changing with K. As the two cells become nearly 
equal in size, with increasing K, convective heat transfer is 
diminished. The competition between these two mechanisms 
results in the locally diminished heat transfer rate seen in the 
curves of Fig. 6. Note that no point of inflection appears for 
Ra=103 because the convective contribution to Nu, is very 
small. As seen from equation (13) the conduction component 
of Nu,- is in general not unity as it is in the case K = 1 (rec
tangular enclosure). Therefore the heat transfer representation 
in terms of Nu,- tends to mask the contribution of convective 
heat transfer. Consequently the data of Fig. 6 are replotted in 
terms of the ratio Nu,/(Nu,)cond in Fig. 7. This figure shows 
that the convective contribution to the heat transfer (relative 
to conduction) decreases with increasing K for # £ 3 . 5 and 
then increases for larger K. This behavior is a direct conse
quence of the transition from inner to outer cell dominance 
which occurs near K =3'.5. For large values of K (Fig. 7) the 
ratio Nu,/(Nu,)cond again decreases slowly since conduction 
heat transfer grows without bound (equation (13)) as K in
creases while convective heat transfer is bounded. Hence, all 
the curves in Fig. 7 will approach unity asymptotically as 
K-oo. 

Conclusions 

The steady natural convection of cold water in a vertical an
nuius has been studied. It is found that density inversion 
phenomena are altered substantially by curvature of the an
nuius. It is the combination of the inversion parameter R and 
the curvature K which ultimately gives rise to a particular 
steady flow structure in the annuius. A transition from inner 
to outer convective cell dominance can be effected by either in
creasing R (shifting the extremum temperature toward fh) or 
by increasing the curvature K of the annuius. When this transi
tion takes place a decrease in convective heat transfer occurs 
since each of the two counterrotating cells is effectively 
isolated from the opposite wall. An expression for the vertical 
velocity in an infinitely tall vertical annuius has been shown to 
yield a good approximation to the flow in finite (A > 8) annuli 
away from the horizontal end walls when R = 1/2. 
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The flow in an infinitely tall annulus {A — oo) is purely ver
tical, i.e., « = 0, v = v(r). From equations (7) and (8) then, 
dp/dz = const, hence equation (8) becomes 

r2 = E ( - » 

(K - 1)2?•+• (log K)i 

k{2{\-R)\o%K)«*k^ 

7-3 = £(-D* 

(q + k+X)k\ 

[2(\-R)\o%K\i+k+1 

(q + k+\)(q + k + 2)k\ 

Journal of Heat Transfer NOVEMBER 1987, Vol. 109/905 
Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



S. B. Robinson 

J. A. Liburdy 

Thermal Fluids Laboratory, 
Department of Mechanical Engineering, 

Clemson University, 
Clemson, SC 29631 

Prediction of the Natural 
Convective Heat Transfer From a 
Horizontal Heated Disk 
A thin-layer approximation is applied to the laminar momentum and energy equa
tions governing the natural convection above an isothermal heated disk in air. Using 
the Boussinesq assumption the equations are nondimensionalized in terms of a 
stream function, pressure and temperature difference. The variables are expanded in 
a series solution and the resulting set of equations are solved numerically. The solu
tion is cast in terms of the nondimensional radial position and the disk Grashof 
number. These two parameters are shown to define the outer boundary conditions 
which are uniquely determined from a point source solution. The outer velocity 
boundary condition is shown to decrease in relative magnitude as the disk Rayleigh 
number increases. Beyond a Rayleigh number of approximately 106 the outer flow 
may be ignored in calculating the disk heat transfer rate. The radial variation of the 
outer flow is to the —1/5 power measured inward from the leading edge. This is a 
result of the scaling difference of the thin layer flow, and the outer, plume entrain
ment flow. The local heat transfer rate is increased by including the entrainment ef
fects on the outer flow and varies as the Grashof number to the power (1/5-e), 
where e is a decreasing function of inward radial distance. 

Introduction 
Natural convective heat transfer from a finite-size, horizon

tal disk is complicated by the interaction of entrained flow 
along the disk with the separated flow from the surface. Two 
important parameters that affect the structure are the 
geometry and an appropriately defined Grashof number. 
Limits can be identified as (i) a point heat source which 
releases thermal energy in the form of an axisymmetric plume, 
and (ii) a large horizontal disk which, in the limit, neglects the 
radial geometry over a large portion of the disk and assumes 
that the central region, where flow separation occurs, is of 
minor importance to the heat transfer. 

The first limit has been analytically and numerically solved, 
in terms of similarity variables, by Yin (1951) and Fujii (1963). 
The results show a (-1) power law dependence on the 
temperature decay with elevation. Also, the similarity 
transformation indicate a (1/4) power law dependence of the 
plume width on the source Grashof number. This Grashof 
number is defined in terms of a steady heat release rate and 
elevation above the heat source. The plume width decreases (at 
a given elevation) with increased source strength. 

The second limit, that of a very large disk, is fundamentally 
quite different from the first. The radial geometry effects 
become insignificant except near the disk center; this could 
then be treated similarly to a semi-infinite heated flat plate. 
Analyses by Stewartson (1958), Rotem and Claassen (1969), 
and several others indicate scaling for the Boussinesq form of 
the governing equations for a flat plate. The appropriate 
stretching of the y coordinate (upward normal to a heated 
disk, downward normal to a cooled disk) is proportional to 
Gr,_l/5. Here, Gr, is the Grashof number based on an ap
propriate length scale / for the boundary layer development. 
An upper bound on /, measured from the disk edge inward in 
the primary flow direction, represents a measure of the extent 
of validity of the boundary layer analysis. This critical value 
of the length scale is inherently dependent on the relationship 
between the local buoyancy force and resulting pressure gra
dient driving the flow. 

The present problem, that of a finite-size heated surface, 
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addresses the development of the inward, entrained flow, tak
ing into account the existence of flow separation. Zakerullah 
and Ackroyd (1979) use a series expansion solution to solve 
the nearly parallel flow equations. They treat the radial effects 
as a perturbation on the governing equations, thus being valid 
near the edge of the disk. Variable property effects are 
included but their predicted heat transfer rates are less than 
the experimentally determined overall heat transfer rates 
found in the literature. In an earlier paper Ackroyd (1976) sug
gests the order of the error when using first-order boundary 
layer approximations. Merkin (1985, 1983) extends the 
previous analyses for a uniformly heated surface and an 
isothermal heated surface. In both of these studies Merkin ob
tains a solution near the disk center where he shows the ex
istence of a thin viscous region below an inviscid region. All of 
these analyses assume that the nearly parallel flow condition, 
which neglects normal stress components and axial diffusion, 
is valid very near the disk center. Additionally, the outer 
boundary conditions neglect the effects of entrainment by the 
plume that exists near the disk center. 

The overall agreement between analyses and experimental 
results for natural convective heat transfer above horizontal 
disks is fair, at best. Suggested reasons for this lack of agree
ment are (0 the assumption that the proper value of / is 
significantly less than the disk radius in the governing equa
tions, (ii) the neglect of the importance of entrainment by the 
separated flow on the thin layer, and (Hi) the application of the 
boundary layer analysis over the entire disk surface to deter
mine the overall heat transfer rate. There is a lack of ex
perimental data available to determine the effects of disk size, 
Grashof and Prandtl numbers, and reference temperature dif
ference conditions. Detailed temperature profiles do not exist 
which would substantiate the extent of validity of the bound
ary layer analysis and identify the appropriate relationship 
between the length scale / and the heat transfer parameters. 

This paper addresses the natural convection of air above a 
horizontal, heated disk, facing upward. This includes the 
development of the disk boundary layer and proper scaling of 
the entrainment flow relative to the disk boundary layer. The 
flow and temperature fields near the disk can be segmented in
to two domains as shown in Fig. 1. The heat transfer 
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Fig. 1 Flow geometry and coordinate system; note that the z axis is a 
line of symmetry 

local buoyancy force is not sufficient to cause separation then 
the flow has a thin layer developing inward along the surface. 
Near the center of the disk the flow must separate to form a 
plume. If undisturbed, the plume will be a steady flow whose 
energy transport rate is equal to the heat transfer rate from the 
disk surface. The outer edge of the thin layer is defined as the 
point vertically above the surface where the temperature has 
decayed to the ambient value and the shear stress is zero. At 
some radial location near the center of the disk the boundary 
layer approximations break down and there is the transition to 
the plume. 

The strength of the central plume depends on the buoyancy 
forces generated by the relative disk temperature. If the 
heating rate is very high the local buoyancy forces may be 
large, causing flow separation from the surface. This condi
tion will not result in plume development as previously 
described, but will rather cause bursting of heated fluid from 
the surface. This Has been documented by Yousef et al. (1982) 
for square surfaces, and Liburdy et al. (1987) for a heated 
disk. In this latter case, only a very small region near the edge 
of the disk may adhere to the thin-layer approximations. 

The governing equations for the thin layer, using the 
Boussinesq approximation, are 

mechanism is assumed to occur over a sufficiently large disk 
surface such that a boundary layer can develop prior to 
separation. The separation may result from either the collision 
of radially inward flow occurring near the center of the disk, 
or a sufficiently large local buoyancy force which overcomes 
the radial momentum resulting in separation prior to the 
center portion of the disk. 

We put forth in this paper a method to determine boundary 
conditions for the solution of the thin layer region and thus 
better predict the local heat transfer rate from the disk sur
face. The analysis assumes a point source plume behavior of 
the central upward flow from the disk. This assumption is sup
ported by experimental evidence. Results of the predicted local 
heat transfer rate from the disk are presented, and compared 
to previously published experimental results. 

Mathematical Model 

The convective heat transfer from the heated surface is 
assumed to be a result of the radially inward heated flow, 
which results in a central plume as shown in Fig. 1. 

The analysis is limited to a region on the disk surface which 
has not experienced flow separation. If we assume that the 
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These equations are nondimensionalized based on the 
following definitions: 

f = 

r, = Gr> 

( ' — ) 

1—2/5 

F(l n) = -^— Gr' I / 5r 3 / 5 

vap„ 

(2a) 

(2b) 

(2c) 

N o m e n c l a t u r e 

a = disk radius 
Cp = specific heat at constant 

pressure 
/ = similarity variable, stream 

function for the point source 
plume 

F = similarity variable, stream 
function for the thin layer 
region 

G = similarity variable, pressure 
function for the thin layer 
region 

g = acceleration of gravity, 
positive downward 

Gr„ = Grashof number based on 
risk radius 

Grd = Grashof number based on 
disk diameter 

k = thermal conductivity 
Nurf = Nusselt number based on 

disk diameter 
P = perturbation pressure 

Pr = Prandtl number 
Qp = heat source strength 
Ra = Rayleigh number 

r = radial coordinate 
T .= temperature 

Tc = centerline temperature 
Ts = disk surface temperature 

T„ = ambient temperature 
ur = velocity in the r direction 
uz = velocity in the z direction 
z = vertical coordinate 

z0 = location of the virtual origin 
relative to the disk elevation 

(3 = coefficient of thermal 
expansion 

f = dimensionless distance from 
the disk edge toward the 
center 

77 = independent pseudosimilarity 
variable for the thin layer 
region 

6 = similarity variable, 
temperature for the thin layer 
region 

9C = nondimensional centerline 
temperature 

v = kinematic viscosity 
£ = similarity variable for the 

point source plume 
p = density 

/>„ = density of the ambient fluid 
4> = stream function 
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where 7^ is the disk surface temperature and Gr0 is defined as 
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The stream function \j/ for the thin layer is defined by 
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Based on the above, the horizontal and vertical velocity com
ponents become 

and 
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where a prime denotes differentiation with respect to ?j. The 
resulting governing equations for conservation of radial 
momentum, vertical momentum, and thermal energy are 
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The boundary conditions, expressed in nondimensional form, 
are a result of the no-slip velocity condition, the isothermal 
surface temperature, the ambient temperature and pressure, 
and the plume entrainment. The first three conditions result in 

F ( r , 0 ) = F V f ( f , 0 ) = fl(r,«) = G(f,oo) = 0, 

0(f,O) = l (7) 

By definition the thin layer extends from the disk surface to 
the height where the temperature decays to T„ . The entrain
ment velocity is used to specify the boundary condition for F' 
at the edge of the thin layer F'(oo). The plume-like behavior 
near the disk center establishes an entrainment condition 
which influences the thin-layer flow over the outer portion of 
the disk. Since the region above the thermal boundary layer is 
driven by the plume entrainment it is a nonheated, essentially 
inviscid, flow. An expression for the entrainment can be deter
mined by assuming a virtual origin for the plume. The 
resulting horizontal velocity component can be expressed in 
terms of a nondimensional stream function, / = yfi/vz, that is 
valid in the region radially beyond the thermal plume. The en
trainment velocity for the point source plume is (see Fujii, 
1963) 

V llimit f-oo V £ 2 / ' 

Here / is the dependent similarity variable, a function of £ 
which is defined as 

r gf3Z2Qp 1 v* / r \ 

l2irpCy} \zJ -2-KpCpv*\ \ Z / ( 9 ) 

where Qp is the total heat transfer rate from the source a n d / ' 
represents the derivative o f / w i t h respect to £. A numerical 
solution of the governing point source plume equations in 
similarity form was carried out using a fifth-order Hamner 
predictor-corrector method with results identical to those ob
tained by Fuji (1963). Our results show that the outer bound
ary conditions for the plume are satisfied to within ± 10~4 at 
£ = 10. Thus equation (8) can safely be reduced to the form 

urr I 
V llimit £ — oo 

= - / (» ) (10) 

The value of/(oo) for Pr = 0.72 is 7.528. 
Using these results, the entrainment boundary condition for 

the thin layer along the disk surface for F ' can be specified in
dependently of the plume origin. The result is 

F'(oo) = 7 .528Gr- 2 / 5 r 1 / 5 (H) 
where F'(°°) represents the value of F' outside of the thin 
layer and outside the central plume. Since the plume entrain
ment velocity varies as r~' to satisfy the continuity relation
ship, thenF'(oo) varies as r _ 1 / 5 . The dependence of F'(oo) on 
Gra is a result of the velocity scaling and is consistent with the 
scaling for a semi-infinite heated surface (Rotem and 
Claassen, 1969). 

The governing equations (6) with boundary conditions (7) 
and (11) for the thin layer were solved assuming a series expan
sion for f similar to the procedure used by Zakerullah and 
Ackroyd (1979). The approach is valid for small values of f 
and has the following form: 

V(V,t)= E ^ M i j ) (12) 

where V represents any dependent variable and V„(rj) is the 
nth-order expansion term, which is only a function of r;. The 
values of Vn are obtained by solving the system of equations 
for the zero through n order equations consecutively. 

The disk heat transfer is evaluated from the local surface 
temperature gradient. In nondimensional form the local con-
vective coefficient h is 

( ^ L = ^ < * 1 " E ™ < O > (13) 

For comparison, the average Nusselt number based on the 
disk diameter, assuming F'(oo) = 0, is 

oo 

N u d = - 2 . 7 4 9 G r y 5 X ) ^ ( 0 ) (14) 
n = 0 

where -0,5(0) = 0.3573. 
The numerical solution of equations (6) requires specifying 

F"(0), 0'(O), and G(0), which are initially unknown. An 
iterative multivariate search was developed which simulta
neously updates iterative initial values. This scheme is based 
on maximizing the total rate of convergence using a gradient 
vector formed from the partial derivatives of the unknown in
itial conditions with the outer boundary values for F'(oo), 
0(oo), and G(oo). Solutions were determined satisfying a least-
squares error of the outer boundary conditions. Details are 
provided by Liburdy and Robinson (1985). 

Experimental Procedure and Results 

An experimental apparatus was designed and tests per
formed to determine whether or not the thermal structure 
above the heated surface is as described in the mathematical 
model. A schematic of the test apparatus is shown in Fig. 2. 
The apparatus consisted of a 50.8-mm-dia copper disk heated 
from below, an insulation and support assembly, and a 
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Fig. 2 Schematic of the heat transfer apparatus, which was supported
on an Isolation vibration table

,I

0,80,60.40,2

oL-__.L-__...L.__-.l-__-.l-__-L_

°

0.8 mm from the disk surface to assure constant and uniform
temperature conditions throughout each experiment. The cop
per disk was heated with a thin foil resistance heater, and was
insulated on the bottom and sides with a low-conductivity
ceramic glass. Further details concerning the apparatus are
given by Robinson (1985).

The air temperature above the disk was measured with a
fine wire thermocouple (0.25 mm dia) attached to a traverser
accurate to ±0.05 mm. Radial traverses were made at various
elevations above the disk. The temperature data were recorded
and stored with a PDP data acquisition system. The millivolt
signal from the thermocouple circuit, referenced to the ice
point, was amplified and then sampled at several different
rates to determine the mean temperature. Each mean
temperature presented was evaluated from 1024 data points
which were recorded at 3 samples per second.

Interferograms were also obtained using a holographic in
terferometer for qualitative information about the nature of
the temperature distribution above the disk. Figure 3 shows
two interferograms of the convective pattern in air above the
heated disk for Ora = 7.7 X 104 and 1.2 x 105 • Note that this is
an axisymmetric structure; therefore the fringe patterns repre
sent the Abel transform of the temperature distribution. It is
evident that a well-defined narrow plume exists above the disk
center. A thin layer develops inward from the edge of the
heated surface with a rapid transition to the central plum~.
The case of the larger Orashof number results in a somewhat
better-defined thin layer and stronger plume.

Figure 4 shows radial temperature distributions measured at
four different elevations above the disk surface. At lower
elevations, the temperature is fairly constant up to ria = 0.4
and then decreases rapidly to the ambient value. At zla=0.2,
the temperature profile very nearly matches the numerically
obtained distribution for an ideal point source, where the ideal
point source solution is matched to the measured centerline
temperature. Observing the structure in Fig. 3 shows that
zla =0.2 is approximately twice as high as the thin layer where
it begins to form the plume. At larger zla, the temperature
profile quickly decays to nearly the ambient temperature. The

ria =( I - C)
Fig. 4 Radial temperature distributions at four elevations above the
disk surface for Gra = 6.0 )( 104

traverser for a thermocouple probe. A horizontal edge exten
sion of thin (1.5 mm) balsa wood protruded radially 76 mm
beyond the disk edge with a beveled leading edge. This exten
sion was insulated from the heated copper disk with a ceramic
glass lip and a thin layer of silicon paste. The purpose of the
extension was to assure a predominantly horizontal flow near
the edge of the disk to establish the thin layer flow. The disk
was instrumented with three thermocouples embedded within

Fig. 3 Holographic Inteferograms of the axisymmetric thin layer and
plume development above a heated disk in air at two Grashof numbers:
top, Gr. = 7.7)( 104 ; bottom, Gr. = 1.2)( 105
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Table 1 Numerical results 
Ora 

104 

105 

106 

r 
0.0 
0.1 
0.2 
0.3 
0.4 
0.0 
0.1 
0.2 
0.3 
0.4 
0.0 
0.1 
0.2 
0.3 
0.4 

Fo(»)* 

0.1884 
0.1924 
0.1970 
0.2023 
0.2087 
0.0750 
0.0766 
0.0784 
0.0805 
0.0831 
0.0299 
0.0305 
0.0312 
0.0321 
0.0331 

*o(°°) 
0.1862 
0.1912 
0.1991 
0.2023 
0.2060 
0.0726 
0.0773 
0.0794 
0.0809 
0.0848 
0.0296 
0.0312 
0.0322 
0.0335 
0.0341 

F"(0) 

0.9808 
0.8779 
0.7750 
0.6568 
0.5262 
0.9810 
0.8688 
0.7404 
0.6530 
0.5262 
0.9582 
0.8838 
0.7435 
0.6330 
0.5667 

-0'(O) 

0.3633 
0.3590 
0.3540 
0.3460 
0.3351 
0.3600 
0.3553 
0.3478 
0.3435 
0.3344 
0.3489 
0.3550 
0.3471 
0.3407 
0.3337 

-G(0) 

1.7011 
1.7522 
1.8180 
1.8610 
1.8567 
1.7247 
1.7592 
1.7702 
1.8651 
1.8630 
1.7392 
1.7917 
1.7838 
1.8218 
1.8695 

•Values from equation (9). 
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Fig. 5 Centerline temperature decay tor two Grashof numbers 

uniform temperature near the center portion is a result of the 
inward flow mixing of the heated air. 

The centerline temperature decay is shown in Fig. 5 for two 
different Grashof numbers. Near the disk surface the slow 
decay rate is due to mixing of the inward heated flow along the 
disk. As ambient fluid is entrained, the decay rate increases. 
Based on the similarity solution of a point source plume, the 
temperature difference between the centerline and ambient 
temperatures decays as (z)"1, where z is the height above the 
source. By specifying a virtual origin at a distance z0 from the 
disk surface, the centerline temperature decay rate can be ex
pressed as 

- - ( ^ 
(15) 

Data for Gr,, = 6 x 104 and 105 for n = 1 yield virtual origins, 
z0/a, of 0.27 and 0.45, respectively. In Fig. 6 the data are 
presented according to equation (15) showing that the plume 
decay rate is consistent with a point source plume which sup
ports the boundary condition specified by equation (11). 

Numerical Results 
Numerical results are presented for the nondimensional 

stream function F, temperature difference 6, and pressure G, 
for Grashof numbers between 104 and 106. Results for n = 0 

1.0 

5.0 

.10 

.05 

.01 

O • Gr0 = 1x10s 

A Gr„ = 6x l0 4 

_l I J I I L_L_ 
.01 .05 0.1 

z - z 0 

0.5 

Fig. 6 Centerline temperature decay using a virtual origin; the - 1 
slope is that of a point source plume 

F,0 
Fig. 7 Flow and temperature distributions in nondimensional variables 
at three radial positions on the disk for Gra = 106 

are presented in Table 1; these show that there is a significant 
reduction of F0"(0) and to a lesser extent 61,(0) as f increases. 
The magnitude of the outer boundary condition .F0(oo) falls 
rapidly with increasing Grashof number yet is still significant 
uptoGr„ = 106. 

Profiles of F'{i), f) as a function of -q for Gra = 104 are 
shown in Fig. 7. To satisfy conservation of mass, F'fl/5 re
mains constant for a given Grashof number. For increasing f 
the inner layer thickness, measured to the maxima of/7', re
mains nearly constant. Although not shown, profiles for 
larger values of Gra show the same trend. Also contained in 
Fig. 7 are the nondimensional temperature profiles for 
Gra = 104 and various Rvalues. The magnitude of the effect of 
increasing Gra on the surface temperature gradient is indicated 
in Table 1. 

910/Vol. 109, NOVEMBER 1987 Transactions of the ASME 
Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



35 

30 

25 

20 

15 

10 

5 

\ \ 
\ 
\ 

- \-Grq=10« 
\ "- Gr„ 

" V . - - - G r „ 

C i . 

: \ 
\ 

- \ \ 
\ 

\ Gro=l05 

\ \ 
\ \ 

N ^ G r 0 = l 0 4 ^ ^ 

i i i 

= I06 

= I06 

= I0< 

" • " " • - — - — 

1 1 
.4 .5 

t 
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tal mean Nusselt numbers of Goldstein et al., 1973 

In order to determine the disk heat transfer rate, equation 
(13) is integrated with respect to £. The preceding results in
dicate the dependence of 0'(O) on £ and Gra which must be 
evaluated to accurately determine the overall heat transfer 
rate. A log-log plot of 0'(O, £) versus Gra for various £ yields 
the following relationship: 

-0 ' (O ,0 = C(r)Gr-«<n (16) 

The values of e(£) are small; for example, e = 0.006 at £ =0.02 
and 0.0033 at £=0.4. The function C(£) decreases with in
creasing £, as implied in Table 1. 

A generalized equation can be written for the local heat 
transfer coefficient as 

N u „ = ( — ) = - 2 £ " 
V k /local 

5C(£)Gr' '5- «<» (17) 

Figure 8 shows the results of equation (17) using the values of 
C(£) and e(£) determined from the numerical calculation. 
These results indicate that by imposing the plume entrainment 
condition the overall heat transfer rate does not vary with Gr„ 
to a constant power but varies with location on the disk. Ex
perimental results of Goldstein and Lau (1983) using 
naphthalene sublimation yield a 0.195 power law relationship 
for the mean transfer rate versus Rayleigh number. Their ex
periments were run using square plates in air with extended 
side surfaces. The data were correlated using a length scale 
calculated from the surface area divided by the surface 
perimeter which was shown by Goldstein et al. (1973) and 
Lloyd and Moran (1974) to correlate results for different 
shapes. The 0.195 power law is in agreement with our predic

tion of 1 /5-e(£) , where e(£) is shown to be of the order 
0.0033 up to £=0.4 and increases as £ increases. 

Conclusions 

Solutions of the laminar boundary layer equations have 
been obtained for Pr = 0.72, subject to an outer entrainment 
velocity. The entrainment velocity was determined from the 
point source plume solution, which is assumed to characterize 
the central plume rising from the disk. This condition is sup
ported by experimental data used to determine a virtual origin 
for the disk generated plume. The results show better agree
ment with experimental results when compared to the solu
tion, which neglects the plume entrainment velocity. The local 
Nusselt number has a reduced power law dependence on the 
Grashof number due to the outer entrainment. For a Grashof 
number based on a disk radius greater than 106, the plume en
trainment velocity becomes insignificant, but for high Grashof 
numbers the thermal structure will most likely be significantly 
altered and the analysis presented would no longer apply. 
Detailed experimental study of the problem is required. 
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Development of Corrective Heat 
Transfer Near Suddenly Heated, 
Vertically Aligned Horizontal Wires 
Experiments have been performed which describe the transient development of 
natural convective flow from both a single and two vertically aligned horizontal 
cylindrical heat sources. The temperature of the wire heat sources was monitored 
with a resistance bridge arrangement while the development of the flow field was 
observed optically with a Mach-Zehnder interferometer. Results for the single wire 
show thai after an initial regime where the wire temperature follows pure conductive 
response to a motionless fluid, two types of fluid motion will begin. The first is 
characterized as a local buoyancy, wherein the heated fluid adjacent to the wire 
begins to rise. The second is the onset of global convective motion, this being 
governed by the thermal stability of the fluid layer immediately above the cylinder. 
The interaction of these two motions is dependent on the heating rate and relative 
heat capacities of the cylinder and fluid, and governs whether the temperature 
response will exceed the steady value during the transient (overshoot). The two heat 
source experiments show that the merging of the two developing temperature fields 
is hydrodynamically stabilizing and thermally insulating. For small spacing-to-
diameter ratios, the development of convective motion is delayed and the heat 
transfer coefficients degraded by the proximity of another heat source. For larger 
spacings, the transient behavior approaches that of a single isolated cylinder. 

Introduction 
Arrays of horizontal cylinders occur in numerous heat ex

change and storage devices. Transfer of heat by natural con
vection about these cylinders can eliminate the need for a fluid 
moving device and therefore simplify and enhance the 
reliability of a particular design. Heat storage exchangers that 
are driven by periodic sources typical of alternate energy ap
plications may require detailed knowledge of the transient 
natural convective response of multiple cylinder geometries. 

The problem of steady-state natural convection for multiple 
cylinders has received some attention in the literature. Eckert 
and Soehngen (1948) measured heat transfer from a three-tube 
array of cylinders, one configuration with the tubes directly 
above each other, and another configuration in which the mid
dle tube was offset by one half diameter. For the first con
figuration, the Nusselt number for the bottom cylinder agreed 
with single-cylinder results, while the Nu number decreased 
for the other two, the explanation being that for tubes located 
in a heated wake, the local temperature difference was less, 
therefore decreasing the heat transfer. For the staggered ar
rangement, the middle tube exhibited a higher Nu number 
than the lowest one, showing that the velocity of the fluid in 
the wake tends to increase the heat transfer. Solid copper 
cylinders of 0.878-in. diameter were used in the experiment. 
Lieberman and Gebhart (1969) studied an array of heated 
wires. The spacing and inclination of the plane array could be 
varied. For the vertical array, the Nu number of each wire 
decreased in the vertical direction for small spacing, while the 
opposite was true for larger spacings. The spacing (S/D) and 
Gr^ for this experiment were much higher and lower, respec
tively, than one would expect in practical devices due to the 
use of small wires. Marsters (1972) recognized this and did a 
detailed study of the heat transfer of a plane array of heated 
6.35 mm o.d. tubes with variable spacing. Although all of his 
S/D values were much smaller than Lieberman and Gebhart's 
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the same sort of trend was noted, i.e., Nu number decreasing 
in the vertical direction for the smaller spacings tested and the 
opposite for the larger spacings. The "transition" occurred at 
Grashof numbers (based on length from bottom of the array) 
of 106-107, and some success was had with correlating the Nu 
number behavior with a Gr number defined in this way. Clear
ly the wake effect(s) makes cylinder spacing an important and 
not fully understood variable in this problem. Recently, this 
important problem has begun to receive significant attention 
with more precisely controlled experiments. Sparrow and 
Niethammer (1981) conducted experiments on the heat 
transfer from a pair of heated cylinders with diameters of 37.9 
mm in vertical alignment. They reported upper cylinder 
Nusselt number approximately 15 percent less than single 
cylinder values for a spacing-to-diameter ratio of 2 increasing 
and reaching a maximum value of about 20 percent in excess 
of the single value for a spacing-to-diameter ratio of 7 to 9. 
Later, with a similar apparatus, Sparrow and Boessneck 
(1983) examined the effect of misalignment on heat transfer 
from this pair of cylinders. One of their principal conclusions 
was that offset of the cylinders tends to moderate the spacing 
effects. That is, an increase in offset makes the ratio of upper 
cylinder Nusselt number to single cylinder Nusselt number ap
proach one from the enhanced or degraded values quoted 
above. In all cases, the misalignment had no further effect for 
offset to diameter ratios exceeding 2. Tokura et al. (1983) ex
tended the work of Sparrow and Niethammer by testing spac
ing effects on two, three, and five-cylinder vertical arrays. 
They showed an average Nu number for the entire array which 
was degraded for S/D of less than 2 and enhanced for S/D up 
to about 10, where a maximum was reached. For fine wires, 
Honda et al. (1983) show the same trends but the crossover 
between degradation and enhancement occurs at S/D of about 
20, increasing to a maximum at a value of S/D of about 100. 

For a vertical element, the transient following a step change 
in wall temperature or heat flux is known to consist of three 
relatively distinct regimes. The initial regime is characterized 
by pure conduction. The fluid motion begins as the diffusion 
of heat from the body establishes variations in the density 
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field. Finally, the convection currents become established and 
dominate the heat transfer. The limit of pure conduction and 
the minimum (overshoot) which sometimes occurs in the heat 
transfer coefficient are well-known characteristics of these 
transient problems and have been clearly related to the ex
istence of a sharp leading edge (Nanbu, 1971; Mahajan and 
Gebhart, 1978). Unlike the vertical element problem, deter
mining the onset of convective motion for a horizontal bluff 
geometry requires consideration of the thermal stability of the 
surrounding fluid (Vest and Lawson, 1972; Parsons and 
Mulligan, 1978). The conduction regime breaks down at a 
critical Rayleigh number defined on the basis of temperature 
penetration depth. Although movement of the fluid on the 
side of the cylinder is also present, the stability layer appears 
to control the transient for a wide range of conditions. This 
work is summarized by Parsons and Arey (1984). 

The purpose of this study was to examine the transient con
vective response of both a single and two vertically aligned 
horizontal wires, suddenly and equally heated. The 
temperatures of the wires were monitored with an unbalanced 
resistance bridge arrangement while observing the develop
ment of the surrounding fluid temperature field with a 
Mach-Zehnder interferometer. This gave the clearest physical 
picture yet of the onset of convection under these cir

cumstances. It was expected that the cylinder interactions 
would significantly alter the convective transition between 
pure conduction and steady convection. 

Experiments 

A Mach-Zehnder interferometer was used with a He-Ne 
laser light source. The test section was constructed of 1.2-cm-
thick plexiglass with an outer insulation blanket, providing a 
sealed enclosure approximately 35 cm high by 35 cm wide and 
45 cm deep. The thermal environment inside the enclosure was 
well monitored at three separate levels to assure thermal 
equilibrium between test runs. A system of gear and slide ad
justments, which attached the test section to an optical table, 
provided three degrees of linear freedom and two degrees of 
rotational freedom. This was necessary to adjust the horizon
tal wires parallel to the optical path accurately. 

The wire holder is seen in Fig. 1. A main brace was attached 
to the sides of the test section to hold four solid copper bus 
bars between which two 0.076 mm ± 0.003 mm diameter 
platinum wires were stretched. The length of the heated wires 
was 9.2 cm. Grooves of approximately 0.050-mm depth were 
cut into the sides of the bus bars to set the wires and ensure 
minimal contact resistance. The mounting arrangement al
lowed the bottom wire to be raised or lowered by angular rota
tion and then placed vertically under the top wire by the 
translation of the linear table. The alignment measuring ar
rangement could make horizontal measurements to 0.025 mm 
and vertical measurements to 0.0125 mm. The cylinder offset 
and S/D ratio were checked before and after each test run was 
made. 

Radiation heat loss from the two-wire arrangement was 
considered using the same procedure as Sparrow and 
Niethammer (1981). For this study's worst case, radiation 
losses were calculated at less than 2 percent of input heat rate. 
Therefore, radiation losses were considered negligible for all 
cases. 

The wire length-to-diameter ratio (L/D) for these test sec
tions was approximately 1200 and was limited to this value by 
space requirements of the Mach-Zehnder interferometer. As 
pointed out by Gebhart and Pera (1970) and Morgan (1975), 
an L/D of approximately 104 is necessary to neglect complete
ly end effects in the measurement of steady-state natural con-

N o m e n c l a t u r e 

d = 
g = 

Gr = 

h = 

k 
L/D 

Nu 
Nuss 

Pr 
q' 
Ra 

Ra* 

Ras = 

specific heat at constant 
pressure 
diameter of wire 
gravitational accceleration 
Grashof number = 

^ ( r w - r „ ) d W 
convective heat transfer 
coefficient = 
q' /Trd(Tw-Tx) 
thermal conductivity 
length of wire to diameter of 
wire ratio 
Nusselt number = hd/k 
Nusselt number at steady-
state conditions 
Prandtl number = cp/k 
cylinder linear heat rate 
Rayleigh number = Gr-Pr 
modified Rayleigh number 
based on heat rate = 
Ra^Nu 
Rayleigh number based on 
penetration depth 8 

S/D 

t 
T 

T 
T 

8 = 

V-

P 
T 

spacing of wires to diameter 
of wire ratio 
time 
temperature 
wire temperature 
bulk fluid temperature 
thermal diffusivity = k/pc 
coefficient of thermal expan
sion of fluid 
penetration depth of 
temperature field around 
cylinder 
dynamic viscosity of fluid 
density 
Fourier number = Aat/d2 

Fourier number at the begin
ning of fluid movement as 
designated by the deviation 
of top and bottom isotherm 
measurements 
Fourier number at the begin
ning of fluid movement as 
designated by the deviation 

of wire temperature from 
pure conduction response 

TD = Fourier number at the onset 
of global convection, as 
predicted by stability theory 

TP = Fourier number corre
sponding to the peak of wire 
temperature response 

TS - Fourier number designating 
the time of distinct change 
in slope for the wire 
temperature profile 

TSS = Fourier number at beginning 
of steady conditions 

TTH = Fourier number at the begin
ning of significant heated 
layer thinning as designated 
by side and bottom isotherm 
measurements 

Subscripts 
B = bottom wire 
T = top wire 
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Fig. 2 Typical sequence of Mach-Zehnder photographs showing (A) 
pure conduction, (6) local buoyancy regime, (C) beginning of global con
vection, and (D) approaching steady convection 
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Fig. 3 Example of wire temperature response for overshoot transient 

vection Nusselt numbers in air. Some small systematic error 
due to end effects could thus be expected but was not further 
considered in these studies of transient cylinder interactions. 

A wheatstone bridge/power supply unit was used to heat the 
test wires. A high-speed chart recorder provided a time versus 
bridge unbalance (temperature) curve to be correlated with the 
film frame by frame. For these experiments, both wires were 
heated identically in all cases. This was confirmed by heating 
each wire independently and matching the temperature pro
files prior to each test run. The power supply system was on 
continuously ensuring that the components were at a steady-
state operating temperature. A timer, accurate to 0.01 s, was 
mounted on the screen and photographed along with the in-
terferometric image. This procedure allowed each frame to be 
correlated to the actual time from the start of the heating 
process. 

Results 

Single Wire. Forty acceptable runs were made using power 
levels of 0.14 to 1.5 W / m . Steady-state temperature levels 
were confirmed by comparison with an established Nusselt 
number correlation (Churchill and Chu, 1975). A typical series 
of Mach-Zehnder photographs is shown in Fig. 2. As ex
pected, the development of the temperature field can be 
described as occurring in three stages. In the first photograph, 
heat is being conducted radially from the wire as evidenced by 
the concentric growth of the temperature fringes. As time pro

ofs 1,0 1.5 2.0 2.5 
TIME, r(x10") 

Fig. 4 Example of fringe position measurements for overshoot 
transient 

ceeds, a temperature fringe, while retaining its circular shape, 
drifts upward by buoyancy. Finally, large-scale convective 
fluid motion begins and the fringe pattern is distorted 
significantly. 

The data obtained are portrayed in the next two figures. The 
wire temperature-time response as measured by the resistance 
bridge circuit is shown in Fig. 3. An analytical pure conduc
tion solution for a small cylinder subjected to constant heating 
at zero time and dissipating heat to an infinite medium has 
been described by Carslaw and Jaeger (1959) for the case of in
finite cylinder thermal conductivity and finite cylinder heat 
capacity. The solution is shown plotted in Fig. 3, The time to 2 
percent deviation of wire temperature from pure conduction 
(rCD), time to peak of temperature response (rP), the steady-
state temperature difference and corresponding time (TSS) were 
noted and are tabulated in Table 1. 

Measurements of fringe position from the Mach-Zehnder 
photographs are shown in Fig. 4. The exposure time and timer 
image on each photograph allowed time resolution to approx
imately 0.005 s. Fringe position measurements were taken 
from the movies using frame-by-frame projection with an 
estimated accuracy of ± 0.03 cm. Time to beginning of fluid 
movement (rB), designated by the deviation of the top and 
bottom isotherm measurements, and the time to significant 
thinning of the side and bottom measured isotherms (TTH) 
were noted and recorded in Table 1. 

Comparison of these data reveals a clear picture of the tran
sient. The time to end of conduction TCD corresponds to the 
beginning of fluid motion TB; the difference between these 

Table 1 

Group 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9* 

10* 

Heat 
Load, 

q' 
(W/M| 

.144 

.289 

.420 

.568 

.734 

.895 

1.02 

1.17 

1.32 

1.47 

Ra* 
(xl0-«) 

.723 

1.45 

2.12 

2.87 

3.73 

4.55 

5.19 

5.97 

6.76 

7.53 

NU„ ( 

.433 

.460 

.486 

.490 

.505 

.535 

.540 

.556 

.551 

.557 

10«) 

... 

1.0 

98 

93 

88 

86 

77 

74 

71 

(X104) 

3.9 

2.82 

2.56 

2.43 

2.22 

2.12 

2.06 

1.96 

... 

(Xl04) 

... 
7.77 

6.45 

6.04 

5.13 

4.68 

4.49 

4.30 

4.23 

3.88 

(x10«) 

... 
1.5 

1.3 . 

1.0 

.97 

.93 

.89 

.73 

.68 

.68 

(xl0«) 

2.5 

2.4 

2.3 

2.2 

2.3 

2.2 

2.0 

1.7 

1.5 

(xl0>) 

4.7 

2.95 

2^57 

2.25 

1.95 

1.82 

1.72 

1.67 

1.55 

1.48 

XCD 

... 

... 
2.6 

2.5 

2.4 

2.4 

2.4 

2.5 

... 

2.4 

2.35 

2.35 

2.6 

2.55 

2.6 

2.3 

2.15 

NO OVERSHOOT OBSERVED 

GROUP 6 
Ra* = 4.55x10 
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points is typically 6-8 percent. This is considered to be within 
experimental accuracy. 

After TCD, a local buoyancy motion begins in which the 
heated cylinder of fluid around the wire begins to rise. 
Ostroumov (1956) partially formulated a theory for this move
ment based on slow viscous motion around a solid cylinder. In 
the simplest case, suggested by the measured movement of the 
isotherms (Fig. 4), he assumed a uniform acceleration of the 
cylinder until the cylinder broke away from the wire with a 
constant ascent velocity at 2 rCD. He could then solve his ap
proximate equation for an effective heated cylinder radius of r 
= (4ott)W2. His data, however, indicated a larger effective 
radius than this; the wire retarded the motion of the hot fluid 
cylinder. The data from this experiment support this observa
tion. The ratio of time to attainment of constant ascent veloci
ty to time of beginning motion was observed to be approx
imately 2.5. Significantly, it is also observed that the point 2.5 
TCD predicts the point of peak temperature response to within 
5 percent. As local motion starts after TCD, this local velocity 
of the buoyant cylinder enhances heat transfer and the 
temperature of the wire decreases away from the pure conduc
tive response. The fluid moving past the cylinder, though, is 
"locally thick" relative to the steady convective boundary 
layer, and has been heated above ambient, depressing the local 
temperature difference and heat transfer. This latter effect 
continues until the still thickening heated cylinder moves 
through the wire and this should correspond to the peak of the 
temperature response, as the data indicate. After this point, 
global fluid motion has clearly started, the locally heated layer 
thins down, and a temperature difference predicted by steady 
convective motion is approached. 

It is assumed that the process occurring at the uppermost 
point on a heated cylinder is essentially the Benard thermal 
stability problem of a fluid layer heated from below. This 
problem generally applies for a constantly imposed 
temperature difference with one fixed and one free boundary, 
the instability occurring at the critical Rayleigh number of 
1100. While the Benard instability criteria may not be perfect
ly representative of the physical boundary conditions of the 
present problem, a computational procedure employing it was 
found to be successful by Vest and Lawson (1972) and Parsons 
and Mulligan (1978). This thermal stability criterion, using a 
critical Raa of 1100., predicts a delay time TD as shown in Fig. 
5. Even with the small wires used here, corrections for cylinder 
heat capacity are necessary for experiments in air. The Vest 
and Lawson results are equivalent to the no heat capacity ef
fect prediction line shown on this figure. Comparing these 
predictions with the time to peak temperature response shows 
very good agreement, with a maximum deviation of 10 per
cent, with most runs agreeing to 3-4 percent. Stability appears 
to be a remarkable predictor of onset of global fluid motion. 

As the heating rate is increased, a fundamental change in 
the nature of this transient occurs. As the time to onset of 
global motion decreases, the wire temperature and radial 
temperature penetration may not have reached steady convec
tive values when global convection begins. The temperature 
will then approach its steady value from below and no 
temperature overshoot will occur. The local buoyancy regime 
will be interrupted in this case; no locally thick cylinder of 
fluid moves past the wire before stability causes convection to 
begin. A simple theory and criterion for predicting this transi
tion as a function of the ratio of heat capacities of heater to 
fluid media and the Prandtl number was presented by Parsons 
and Mulligan (1978). This criterion would predict a critical 
heating rate corresponding to a Ra* of 4. X 10~4 for these ex
periments. The data show overshoot not occurring for Ra* 
greater than 6. X l O 4 , the difference attributed to ignoring 
heat capacity effects in the delay time prediction method. The 
interrupted buoyancy regime was best observed in these ex
periments by comparing the time to significant thinning of the 
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Table 2 

Ra* 

S/D 

83 

50 

33 

17 

4.7 

Ra*E 

S/D 

83 

50 

33 

17 

4.7 

Ra* 

S/D 

83 

50 

33 

17 

4.7 

= 3.73 X 1C 

XD 

<x104) 

1.95 

1.95 

1.95 

1.95 

1.95 

Nuss 

.505 

.505 

.505 

.505 

.505 

5.19x10-4 

*D 

(x104) 

1.72 

1.72 

1.72 

1.72 

1.72 

Nuss 

.540 

.540 

.540 

.540 

.540 

= 6.76x10 

"CD 

(x104) 

1.55 

1.55 

1.55 

1.55 

1.55 

Nuss 

.551 

.551 

.551 

.551 

.551 

-4 

NUSST 

.431 

.413 

.389 

.384 

.342 

NUSST 

.451 

.451 

.418 

.407 

.361 

-4 

NUSST 

.490 

.471 

.432 

.420 

.377 

NUSSB 

.480 

.474 

.456 

.454 

.378 

NUSSB 

.523 

.523 

.497 

.495 

.406 

NUSSB 

.544 

.534 

.526 

.514 

.427 

XSB 

(xlO4) 

1.85 

1.90 

1.93 

2.01 

2.41 

XST 

(x104) 

1.96 

1.99 

1.90 

2.41 

2.73 

"CSB 

<x104) 

1.69 

1.69 

1.69 

1.69 

1.69 

"CST 

(X104) 

1.77 

1.77 

2.10 

2.56 

3.37 

XSB 

<x104) 

1.50 

1.49 

1.93 

2.39 

2.38 

"CST 

(xlO4) 

1.61 

1.94 

2.25 

2.65 

2.73 

bottom and side measured isotherm (TTH) to the beginning of 
fluid motion. Although the small changes in slope make TTH a 
difficult measurement, the data show a marked decrease in 
this ratio for the nonovershoot transient. The photographic 
data for these runs do not show a clear local buoyancy period. 
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Fig. 6 Typical sequence ot Mach-Zehnder photographs showing {A) 
pure conduction, (B) pseudo-conduction, (C) local buoyancy, (D) ap
proaching steady convection 
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Fig. 7 Two-wire temperature response, Ra* = 3.73 x 1 0 - 4 , S/D = 83 

Two Wire. Five different spacings and three heat rates were 
chosen for study in the two-wire experiments. Tabular results 
are presented in Table 2. Typical Mach-Zehnder photographs 
for a two-wire experiment (Fig. 6) showed the same three 
distinct regimes as could be seen in a single-wire experiment. 
In addition, however, another occurrence was observed and 
labeled the pseudo-conduction regime (Fig. 6(B)). This term 
describes the fluid shortly after the thermal penetration fields 
from each wire merged. After this point the lower wire's ther
mal penetration depth remained constant, while the upper 
wire's thermal penetration continued to increase essentially 
radially like a conduction pattern. After some distinct period 
of time, the local buoyancy motion begins around the upper 
cylinder and eventually leads to full-scale convective motion. 
For wider spacings where the local buoyancy motion began 
before the thermal penetration fields met, the pseudo-
conduction regime did not occur. For most spacings, the ther
mal penetration depth of the upper cylinder visibly decreased 
from a maximum value during the onset of convection mo
tion. This maximum in penetration depth correlated very well 
( ± 5 - 1 0 percent) with the time and magnitude of the 
temperature "overshoot" that was observed on the time ver
sus temperature graphs discussed below. As would be ex
pected, then, with the stable penetration depth, no overshoot 
was seen on the temperature versus time graphs for the lower 
cylinder. 

The essential elements of the transient mode of the two wire 
experiments can be observed in Figs. 7 and 8. These figures 
show, at a particular input heat rate and spacing, the differen
tial temperature response (Tw — T„) of the two vertically 
aligned wires compared to the temperature response of a single 
wire at the same heat rate and an analytical pure conductive 
response for a single wire. These curves can also be considered 
the reciprocal of transient Nusselt number response (by the 
relation Nu = q'/wk(Tw- T^)). 

For the lowest heat rate, Ra* = 3.73 x 10~4, and widest 
spacing, S/D = 83, Fig. 7 shows that the lower wire results 
matched the single-wire results within approximately 5 percent 
over the entire range, which was within experimental ac
curacy. The steady-state values, the initial slope of the curves, 
the deviation from the pure conduction curve, and the over
shoot were essentially identical on the lower and single wire 
curves. It is also shown that the initial slope of the top wire 
curve matches the single-wire experimental values; however, 
the steady-state values are higher for the top wire and the over
shoot is earlier and somewhat enhanced. The top wire 
temperature is at a higher value than the pure conduction case 
for an extended period of time, crossing over only after the 
top wire approaches steady-state conditions. This can be at
tributed to the heating effects from the lower wire's thermal 
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o- SINGLE WIRE RESPONSE 
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Fig. 8 Two-wire temperature response, Ra* = 3.73 x 1 0 - 4 , SID = 4.7 

plume. A delay in this effect on the upper wire is caused by the 
wide spacing, thus the initial slopes are the same. 

Maintaining this low heat rate and narrowing the spacing to 
its smallest value, S/D = 4.7, it is shown in Fig. 8 that both 
the top and bottom cylinders' initial temperature slopes have 
been increased; the overshoot has disappeared for the top 
cylinder and the steady-state temperatures for the top and bot
tom are higher than the single wire, 33 and 24 percent, respec
tively. This corresponds to an equivalent decrease in steady-
state Nusselt number. The top wire again has the higher slope 
and steady-state temperatures. As can be observed from the 
change in initial slopes and confirmed by the Mach-Zehnder 
photographs, the interaction effects are almost instantaneous 
at this spacing. 

As the heat rate is increased, the profiles for the S/D = 83 
spacing remain relatively the same. The lower wire again 
shows an absence of overshoot but otherwise equivalent 
response to the single-wire data. For the upper wire curve, the 
overshoot occurs earlier and has been further enhanced. The 
initial regime slope for the top wire has increased and thus the 
top wire curve is initially farther away from the conduction 
curve. However, the top wire's temperature profile crosses the 
pure conduction curve sooner than for the lower heating rate. 

As the spacing is decreased for the higher heat rates, the 
same relative movements in the curves are noticed as for the 
lower heat rate. The upper wire's temperature overshoot 
disappears at a wider spacing than before, indicating that the 
total heat rate into the fluid surrounding the upper wire has 
caused global convection to begin prior to the local buoyancy, 
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and thus the upper wire's temperature approaches steady state 
from below. The time required for the top and bottom wires' 
temperature profiles to cross back over the pure conduction 
curve, an indication of the insulating effect of the adjacent 
wire, decreases for increasing heat rate and increases for 
decreasing spacing, as would be expected. 

In previous steady-state multiwire and multicylinder ex
periments, the lower cylinder was assumed to have the same 
temperature as a single cylinder. While at relatively wide spac-
ings this is accurate, in some cases it may have been somewhat 
in error. The limiting factor is the thermal penetration depth 
of the two cylinders with respect to their spacing. Sparrow and 
Boessneck (1983) used a cylinder diameter of 37.87 mm with a 
closest S/D ratio of 2. Even though this was a very low S/D 
ratio, the physical spacing was greater than twice the steady 
convective thermal penetration depth at their high Grashof 
number. Therefore there was no effect of the top cylinder on 
the lower cylinder. Conversely, Honda et al. (1983) used wires 
with diameter of 0.485 mm and the closest S/D ratio of 4.1. At 
their highest heat rates and thus the deepest penetration by the 
upper wire's isotherms, they noticed a decrease in the Nusselt 
number of the lower wire. They attributed this to the geometry 
of the problem, that the convective flow of the lower wire was 
restricted by the upper wire. What they apparently observed 
was the "insulating" effect of the upper wire's thermal 
penetration field on the lower wire. 

One key objective of this study was to identify the end of 
pure conduction, thus signaling the beginning of the transient 
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Fig. 11 Steady-state Nusselt number ratio, Ra* = 5.19 x 10 

regime. The time to distinct change in slope of the top and bot
tom cylinder's temperature profile was recorded and labeled 
as TST and TSB in Table 2. As seen from these data, the values 
steadily increase for identical heat rates as the S/D ratio is 
lowered, thus identifying again a stabilizing effect on the 
cylinder temperature response. By comparing the ratio of TST 
and TSB to TD (the stability delay time which predicted onset of 
global motion in the single-wire experiments), and plotting it 
versus S/D, it is seen that all cases approach a value of 1.0 as 
the spacing is increased (Figs. 9 and 10). This indicates that for 
the transient regimes, the spacings and heat rates chosen do 
represent two single wires at the widest spacings. The increase 
of this ratio as the spacing is decreased is also the strongest 
suggestion of the stabilizing effect of the pseudo-conduction 
regime. This effect is seen to produce delay in onset of convec
tive motion of 50-100 percent at small spacings and to persist 
to higher spacings for higher heat rates, as would be expected. 

The ratios of the steady-state Nusselt numbers, Nuss7- and 
NussB, to the steady Nusselt number for a single wire, Nuss, 
were plotted versus the S/D ratio (Fig. 11). When the Nu/Nuss 
ratio has departed from the value of 1.0, it indicates that the 
cylinder temperature has been either increased or decreased by 
the presence of another cylinder. All bottom wire steady-state 
Nusselt number ratios approached 1.0 within 3 percent for the 
wider spacings at all heat rates, thus indicating no effect of the 
upper wire. This is compared to a 0.77 value for the 
NussS/Nuss ratio at close spacings and the highest heat rate 
tested. This clearly shows the insulating effects that the ther
mal penetration field of the upper wire has on the lower wire. 
Previous studies indicate that at greater than some S/D value, 
the upper cylinder Nusselt number will be enhanced by the 
mixed convection effect of the lower cylinder's thermal plume. 
This transition is reported at S/D of 5 with a cylinder of 37.87 
mm diameter (Sparrow and Niethammer, 1981) steadily in
creasing with decreasing cylinder diameter to a value of 20 
with wires of 0.485 mm diameter (Honda et al., 1983). These 
experiments continue this trend with no enhancement seen for 
S/D of 83 with a diameter of 0.076 mm. The lack of enhance
ment observed may also be partially due to the critical nature 
of the alignment at large spacings using very small wires such 
as those utilized in these experiments. As pointed out by Spar
row and Boessneck (1983), misalignments on the order of 2 
diameters were sufficient to eliminate most of the enhance
ment effect of aligned cylinder spacing. 

Summary 

Single Wire 
A The initial motion observed has been characterized as a 
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local buoyancy motion of the heated cylinder of fluid sur
rounding the wire. 

B Applying a thermal stability criterion with a critical 
value of Raj = 1100 to the fluid layer on top of the heated 
wire provides good correlation for the onset of bulk convec
tion motion. 

C The interaction of the local and global motions is 
dependent on the heating rate and heat capacity ratio of 
cylinder to fluid. For low heating rates, the local buoyancy 
movement develops fully, retards the heat transfer relative to a 
convective development, and is ended abruptly by the onset of 
global convection. The temperature response peaks at this 
point. For heating rates greater than a value chiefly predic
table from the heat capacity ratio, this local buoyancy regime 
is interrupted by the onset of convective motion and no wire 
temperature overshoot occurs. 

Two Wire 
A These experiments are the first to observe successfully 

the transient interaction of developing convection fields near 
heated horizontal cylinders. 

B For certain spacings and heat rates, a "pseudo-
conduction" regime occurs after the first merging of the ther
mal penetration fields. This effect is hydrodynamically 
stabilizing and thermally insulating relative to a single-cylinder 
transient. 

C Evidence of the stabilizing effect is a 50-100 percent in
crease in the time to onset of global convection for the smaller 
spacings tested. 

D The insulating effect of this transition temperature pat
tern is seen by observing that for all spacings tested the top 
cylinder temperature exceeds the pure conductive response at 
sometime during the transient. For small spacings, the bottom 
cylinder also shows this effect. 
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Steady and Transient Analyses of 
Natural Convection in a Horizontal 
Porous Annulus With the Galerkin 
Method 
Steady and transient analytical investigation with the Galerkin method has been per
formed on natural convection in a horizontal porous annulus heated from the inner 
surface. Three families of convergent solutions, appearing one after another with in
creasing RaDa numbers, were obtained corresponding to different initial conditions. 
Despite the fact that the flow structures of two branching solutions are quite dif
ferent, there exists a critcal RaDa number at which their overall heat transfer rates 
have the same value. The bifurcation point was determined numerically, which coin
cided very well with that from experimental observation. The solutions in which 
higher wavenumber modes are dominant agree better with experimental data of 
overall heat transfer. 

Introduction 

Natural convection in a horizontal annular porous layer 
heated from the inner surface and cooled from the outer sur
face has become a subject receiving increasing attention due to 
its practical importance in the problems of insulators, such as 
the ducting system in a high-temperature gas-cooled reactor, 
the storage system of thermal energy, underground cable 
system, etc. A number of works on the subject have been 
published. Caltagirone (1976) investigated the problem ex
perimentally and numberically. Two-dimensional steady solu
tions were obtained numerically and utilizing the perturbation 
technique as well. It was demonstrated by their experiment 
that there existed a different flow pattern at higher RaDa 
numbers. Burns and Tien (1979) examined the variations of 
the overall heat transfer coefficients with the external heat 
transfer coefficient and radius ratio by a steady-state two-
dimensional analysis with the finite difference method and the 
perturbation method. It was indicated that a maximum value 
of the overall heat transfer coefficient existed depending upon 
the radius ratio. Using the finite difference method, Echigo et 
al. (1978a,b) also obtained two-dimensional steady-state 
numerical results taking into account the radiation effect. 
Masuoka et al. (1980) investigated the secondary flow in nar
row annuli (R<1.5) experimentally and numerically, and 
showed that the appearance of the secondary flow could 
enhance the overall heat transfer. Takata (1984) investigated 
the natrual convection in an inclined porous annulus ex
perimentally and numerically, and obtained three-dimensional 
results for the inclined case, using the finite difference 
method. Bau (1984a,b), in recent works, took eccentricity into 
consideration and demonstrated that heat transfer in the an
nulus could be optimized by a proper choice of eccentricity. 

As mentioned above, although several works have been 
presented on the problem, most of them were restricted to one 
flow pattern, the unicellular one, except for the case of a nar
row annulus (Masuoka et al., 1980). However, as experimen
tal measurements (Caltagirone, 1976) show, the flow pattern 
is unlike and not as simple as the unicellular one, and mainly 
because of this, the overall heat transfer rates predicted 
numerically disagree by a wide margin with the experimental 
data (Caltagirone, 1976). It is widely known that the solution 
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of the nonlinear Navier-Stokes differential system is not 
necessarily unique. The fact that more than one flow pattern 
exists depending upon initial conditions or initial perturba
tions is often resported in both experimental and numerical 
works on natural convection. Experimental works about 
typical Benard convection in a fluid layer heated from below 
(Krishnamurti, 1970, 1973) and a numerical work on natural 
convection between two concentric spheres (Caltagirone et al., 
1980) can be taken as examples. For more information on 
bifurcation, readers are referred to Joseph (1985). Depsite the 
differences in the geometric configuration and medium 
nature, there is similarity between the problem considered here 
and that treated in the works of Caltagirone et al. (1980), and 
it is natural to assume that the bifurcation would also occur in 
the numerical solutions dealing with natural convection in a 
cylindrical porous annulus. 

In the present study, the Galerkin method, or spectral ex
pansion method, is utilized. The velocity and temperature are 
expanded with a series of orthogonal eigenfunctions deter
mined by the nature of the space and boundary conditions; 
this makes it possible to focus our attention of a few of the 
main dominant modes whose amplitudes are fairly large com
pared with the others. In the steady-state analysis small pertur
bations are given at the beginning of iterations, while in the 
transient analysis they serve as the perturbed initial condition 
possibly corresponding to real perturbed experimental condi
tions. The perturbation are expected to determine which of the 
branches the solution will finally be led to, although the 
steady-state solutions are not dependent on perturbations in a 
sense of one-to-one correspondence. By observing the growing 
or damping of the perturbations or speical modes, we can 
verify the change of flow patterns and obtain information 
about stability of the flow patterns. The radius ratio is set at 2 
for the convenience of comparing with other data; this will not 
lose the generality from the engineering point of view. The 
results of overall heat transfer corresponding to different flow 
patterns are expected to give a better interpretation of the 
problem. 

Analyses 

The problem considered in the present study is the convec
tion in an annular porous layer enclosed between two horizon
tal concentric cylinders with dimensionless inner and outer 
radii 1 and R, and with their inner and outer dimensionless 
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surface temperature 1 and 0, respectively. Due to the sym
metry of the boundary conditions and gravitational force, the 
flow in the annulus is assumed to be two-dimensional and 
symmetric about the vertical symmetry plane. 

Steady Analysis. The dimensionless groverning equations 
of two-dimensional convection, the conservation of mass, 
Darcy's law and the conservation of energy, are given in equa
tions (1), (2) and (3) as derived by Caltagirone (1976) 

V»v = 0 

1 V 

RaDa RaDa 

-(w)e+v2e=ae/s^ 

(i) 

(2) 

(3) 

where A = [ - c o s 0, sin 0]. The boundary conditions to be 
satisfied are Vr = 0 at r=\, R; K0 = 39/d0 = O at 0 = 0, TT; 
6 = 1 a t / -= l ; and 9 = 0 at r = R. 

Substituting 9 = 1 - In r/ln R + d in equations (2) and (3), we 
obtain 

Tcos 0/ln * ! _ _ ! _ _ 
L 0 J RaDa 

- ( W ) 0 + 
Mni? 

+ V26 = d6/dt, 

(4) 

(5) 

where P* = P/RaDa-Gaxr cos 0 + r ( l - l n /-/In R)cos 0. 
Velocity v and temperature 8 are expanded as follows: 

v = £ V i / 0= £ T„BU (6) 
/ = i 
J = I 

i = i 

The trail functions v,-,- and 0,y are chosen to satisfy the con
tinuity equation and boundary conditions 

V*u =— cos 
'J ar 

i n ( — lnrjcosy'0 

sin/0 

8,y = sin ( — lnr \ cosy'0 (7) 

where a = ln R/TT. In the 0 direction, trigonometric functions 
are used, while in the r direction, orthogonal functions satisfy, 
ing boundary conditions are adopted, obtained from the 
following eigenfunction problem: 

~ r — ry(r)+y2y(r)=0 O = 0 at r= l,R)- (8) 
ar dr ' 

The solution of equation (8) is \/r sin (i/a In r), which is 
used to form Vr, while Vt is obtained from the continuity 
equation (1). In the group of trial functions in equation (7), to 
which we will refer as trial function 1, sin(i/a In r)cos(/0) in
stead of 1/rsin (i/a In r)cos(J4>) is used as the temperature trial 
function for reasons mentioned below. First, it will yield equal 
average Nusselt numbers on the inner and the outer surfaces 
of the annulus when we consider an effective first-term ap
proximation, as will be shown later. Second, it is expected to 
be more efficient in describing overall heat transfer because of 
satisfying the condition 

dr 

36 
(at r = l , R) (9) 

which is derived from equation (5). As an indirect condition, 
equation (9) is not necessarily required to be satisifed by each 
term of the trial functions; it can be satisifed, as a result, by 
the summation of them, equation (6). However, as will be 
discussed later, using trial functions satifying equation (9) will 
actually speed up the convergence of series for the heat 
transfer coefficient. 

The formulation of the Galerkin method (Finlason, 1972; 
Gottlieb and Orszag, 1977) is completed by inserting equations 
(6) and (7) into equations (4) and (5), multiplying them by vm„ 
and 6pg, respectively, and integrating over the annulus. The 
term VP* is eliminated by applying the divergence theorem 
and by taking into account the continuity equation and 
boundary conditions which \mn satisfies. We finally obtain 

N o m e n c l a t u r e 

a 
C, C 

D 

g 

Ga 
N 

Nu 

Nu 

P 
R 

r 
RaDa 

su 

f 

= In R/TT 
= constants defined 

in appendix 
= Dirichelet func

tion (see equation 
(A8) 

= gravitational 
acceleration 

= l/[jS( f / B - f 0 ) ] 
= truncating 

number 
= local Nusselt 

number 
= average Nusslet 

number 
= pressure 
= ratio of inner to 

outer radius 
= radial distance 
= g$Krin(Tin-f0)/ 

aeqv 
= amplitude of 

velocity mode (/', 

J) 
= temperature 

T = 

( = 
V = 

Vr = 

amplitude of the 
mode (i, j) of the 
dimensionless 
temperature 6 
time 
velocity vector 

velocity compo
nent in r direction 
velocity compo
nent in 0 
direction 
equivalent ther
mal diffusivity of 
the saturated 
porous medium 
thermal expansion 
coefficient 
eigenvalue used in 
equation (8) 
dimensionless ex
pansion 
temperature = 
(t~t„y 
(Tin-T0) 

Subscripts 

in 
o 

(LJ)\(i,j); 
(m, n); (p, q) 

dimensionless 
temperature 
defined by 
e - ( l - l n r / I n 
R) 
permeability 
direction vector 
[-cos 0, sin 0] 
kinematic 
viscosity 
angular coor
dinate measured 
from downward 
vertical axis 
stream function 

inner 
outer 

modes of dimen
sionless 
temperature 
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N 

Sm = Cl + I ] ( C2 Ti." + 1 + C3 r/.» - 1) 

m=l,2,...,N; n=\,2,...,N (10) 

£ C5Suliiq-j\ 7V/U./I + C6Spq + C1Tpq =0 

p=l,2, TV; 9 = 0,1 , TV (11) 

where C,, • • • . C7 are coefficients whose values are given in 
ADPendix A. The Nusselt numbers are defined as follows: 

\ r ae I , A 

i f ae i A 

(12) 

With the limitation of /K + n < 2 and p + q<2, equations 
(10), and (11), and (12) reduce to their simplest form as 
follows: 

a 

T20Sn+ Su + (a + )TU=0 
IT \ a / 

Nu = Nu,„=Nu0 = 1 - 2 ^ 0 (13) 

Equation (13), which we call the first-term approximation 
since only one term of the velocity expansion series is con
sidered, is transformed to a one-dimensional third-order 
algebraic equation and will be solved exactly. This exact solu
tion will give a convenient and effective interpretation of the 
problem at low RaDa numbers. 

When N>2, equations (10) and (11) constitute a nonlinear 
algebric system and must be solved by an interation method. 
The iteration is continued until £1/^(0) I <10~3 is satisfied. 
For higher RaDa numbers, we have to conduct several runs by 
increasing the RaDa number step by step because the scheme is 
unstable for large RaDa variations. 

Transient Analysis. With the exception of the time dif
ferential term dd/dt in the energy conservation equation, the 
main procedure of formulation in the transient analysis is 
similar to that described above and is omitted here. The trial 
function dy must be orthogonal in this case if we want to avoid 
matrix inversion for integrating with time using the explicit 
method. Therefore, the trial function 0,y = \/r sin {j/a In r)cos 
J4>, the unmodified one as obtained from equation (8), is used; 
we will later refer to it as trial function 2. The equations thus 
obtained are as follows: 

N 

S„„, (t) = C{ + £ [C{Tit„ + l (t) + C{TKn_x (/)] 
/ = i 

m = 1,2, . . . ,7V; « = 1,2, . . . ,7V (14) 

d N&N 

-77TP,(t) = - L C5'S/,i?-,i ( 0 7 ^ 1 ( 0 
" ' / = i 

/ = i 
J=Q-N 

N 

;'=1 

p= 1,2, . . . ,7V; 9 = 0 , 1 , . . . , TV (15) 

where C{, . . . , C7' are coefficients whose values are given in 
Appendix B. It should be noted that trial function 2 does 
not satisfy the indirect condition (9) as trial function 1 does, 
so that larger truncating numbers are required to obtain 
the results of heat transfer with good coincidence of Nu,-„ 
and Nu0, which deviate from each other by about 3 percent 
using trial function 2 with 7V= 10, compared to within 1 per
cent using trial function 1 with the same TV. However, the de
viation is proved to decrease with increasing TV, and it is found 
that the two trial functions yield nearly equal Nu= l/2(Nu,„ 
+ Nu„), which is used as the evaluation of the overall heat 
transfer. In the calculations, truncating the series by 
i+j<N+l and p + q<N+I was found to be efficient and 
was utilized in most of the calculating runs. In this case the 
summations take different forms; for exmaple, the summation 
of the convection term in equation (15) should be changed to 

N N h 

;=i /=i J=JI 

j 2 = mm[N,N+l-i,N+l-I+q] (16) 

Equations (14) and (15) constitute the first-order nonlinear or
dinary differential equation system and are solved by the so-
called rational Runge-Kutta method (RRK) developed by 
Wambecq (1978) as a nonlinear explicit method for solving 
stiff ordinary differential system, which is stable at much 
larger time step than the usual explicit methods. Its two-stage 
form is adopted. The values of variable parameters taken in 
the present study are the same as those used by Wambecq in a 
simple testing problem of four dimensions; this makes the 
scheme of the second order to the time interval. Compared 
with the conventional Runge-Kutta method (CRK), the 
scheme is found to be almost free from stability restriction to 
which CRK and most explicit methods are subject. At higher 
RaDa numbers and with a large truncating number TV, the time 
interval of CRK was restricted to 0.001, while the calculation 
with RRK did not diverge even with a time interval ten times 
larger. However, if beside the final steady-state solutions we 
also want the transient one, the time interval cannot be taken 
too large due to numerical oscillation occurring during the 
transient process. Generally, time intervals two or three times 
larger can be taken using RRK than using CRK; this will save 
much computer cost because the CPU time by RRK for one 
time step is comparable with that by CRK. The time intervals 
used are between 0.002-0.01. The CPU time for an average 
run is about 20 s with a FACOM-382 digital computer. 

Results and Discussion 

Exact Solutions of First-Term Approximation. Exact 
solutions of equation (13), numerical solutions of equations 
(10) and (11) and of equations (14) and (15) were obtained 
with aspect ratio R = 2 and RaDa ranging from 1 to 300. It is 
important to note that the first-term approximation, equation 
(13), can serve as an effective assessment of the flow con
figuration and heat transfer at low RaDa numbers, and this 
also confirms that the scheme developed is highly efficient. 
The flow pattern obtained from equation (13) is shown in Fig. 
1, where the kidney-shaped flow circulation, often reported in 
literature, is well depicted. Because only one term, the mode 

T — n where 
• M O - " 

27r(3-a2) 7r2(a2 + l)2 _ jl=max[g-N, -(N+l-i), -(N+l-I)+q] 
1 + a 2 + 9 r 2 0 "2RaDa(7?+ l ) f l

 S l l " ° a n d 
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Table 1 Comparison of exact solution of the first-term approximation 
with numerical solutions of higher order at low RaDa numbers 

w 
& 

Fig. 1 Flow pattern obtained from the first-term approximation, 
RaDa = 50, AG = 1/7, ty = <Pmaxl7, $„ -- 5.489 

(1, 1), of velocity is used, the streamline pattern becomes sym
metric about the horizontal symmetry (i.e., 0 = 7r/2) plane. 
This locates the center of the circulation flow at <j> = it/2 
rather than at a higher place as it should be. The resulting er
ror, however, is negligible at low RaDa numbers when the 
center is near <f> = ir/2. In Table 1, the Nusselt numbers from 
the first-term approximation are compared with those from 
higher-order approximations of equations (10) and (11). The 
results are reasonably consistent with the convergent ones (at 
N= 8 or 10) at the range of RaDa numbers which is of impor
tance from the engineering point of view; the maximum error 
is about 3 percent at RaDa numbers up to 50. 

Branching Solutions: Three Flow Patterns. It should be 
noted that there is no general way for choosing initial condi
tions, especially in the problems that involve stability. In
stability expected to occur in the present problem is mainly 
due to a reverse temperature gradient at the top of the an-
nulus, which is similar to the case of the well-known Benard 
problem. In such problems, initial perturbation is necessary 
since the unstable change of flow patterns, as well as the onset 
of convection, is usually caused by small perturbations in the 
nature; the use of conduction solutions or uniform 
temperature distribution as initial conditions may prevent 
these solutions from being obtained. The number of steady-
state branching solutions at a given RaDa number is an intrin
sic feature of the problem and should be independent of initial 
conditions. However, and again, there is no general method to 
determine the number in such complicated nonlinear 
problems; analysis has to be done case by case, and empirical
ly in most cases. The simplicity of the geometric and boundary 
conditions in the present case allows us to assume that the 
possible branching solutions take the form of secondary 
(multiple) cell patterns extending, at the top region of the an-
nulus, in either circumferential or axial directions; the latter 
involves the three-dimensional branching solutions which will 
be discussed in a subsequent paper. 

On solving the problem at higher RaDa numbers, three 
types of initial conditions, shown in Table 2, were adopted at 
the beginning of iterations or integration. The initial condition 
of Type 1, which always generates unicellular flow, corre
sponds to the state of pure conduction, i.e., 6 = 0; that of Type 
2 corresponds to a disturbed distribution of Type 1, with 
temperature being slightly lower at the top of the annulus, 
where a down-forward flow will be generated to form the 
secondary flow. The condition of Type 3 corresponds to a 
disturbance resulting in a higher temperature at the top and in-

RADA 

5 

10 

20 

25 

50 

exact sol 
of (13) 

1.0043 

1.017 

1 .064 

1.097 

1.30 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

N = 4 

00432* 
00428** 

01723 
01697 

.0571 
0657 

1027 
1002 

3491 
3285 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

N = 6 

00432 
00430 

01714 
01707 

.0666 

.0663 

1019 
1013 

3443 
3390 

1 
1 

1 
1 

1 
1 

1 
1 

1 
1 

N = 8 

00431 
00430 

01712 
01709 

.0555 

.0664 

1018 
1015 

3434 
3415 

N=10 

1.00431 
1.00431 

1.01712 
1.01710 

1.0665 
1.0665 

1.1017 
1.1016 

1.3430 
1.3422 

Table 2 Initial conditions for generating three flow patterns 

Type 1 
for unicellular 
flow or MODE 1 

all T. .=0 

Type 2 
for bicellular 
flow or MODE 2 

all T. .=0 except 

T13 = E' T14 = -E' 

and T,g=E. 

Type 3 
for tricellular 
flow or MODE 3 

all 1i =0 except 

T16 = £' T 1 7 ~ e -

T18-E, T 1 9-e. 

Where £ ( > 0 ) = 0 . 0 1 - 0 . 1 . 

eluding higher wave number modes; it will generate tricellular 
flow at higher RaDa numbers. Since velocities are set to zero, 
these conditions are not in conflict with any of the governing 
equations, and the perturbations are so small that the 
temperature distribution of conduction is just slightly dis
turbed; this can be verified later by the temperature distribu
tion at the first time step in Fig. 4 and Fig. 5. 

Three MODEs of solutions were obtained corresponding to 
these different initial conditions. Here, by the term "MODE" 
we mean a flow pattern or a family of branching solutions, 
while by "mode" a special wavenumber combination, i.e., 
(ij), which specifies the wavenumbers in the r and <j> direc
tions, respectively. One case is shown in Fig. 2, where the flow 
pattern of MODE 1, the unicellular flow, is the same as in 
previous works for this aspect ratio, while those of MODE 2 
and MODE 3 can be recognized as bicellular and tricellular 
ones, respectively. Besides the same solutions as obtained in 
transient analysis, an additional flow pattern, MODE 4, was 
obtained in the steady-state analysis over a wide range of 
RaDa numbers. This flow pattern is stable, easy to converge 
and gjyes quite good total energy balance (coincidence of Nu;„ 
and Nu0). However, as will be shown later, it is unstable when 
transient analysis is conducted. Attention therefore will be 
focused here on the other three flow patterns. 

Listed in Table 3 are the dominant modes of temperature 
whose absolute values are above 3 percent of the mean-square 
root of all modes (/, J). It was found that the higher 
wavenumber modes are involved for higher MODE, and that 
besides the common modes describing the main flow circula
tion of the three flow patterns, those appearing in higher 
MODEs are of (1, j) which generally, if not absolutely, are 
more apt to become dominant than those having the same 
total wavenumber i+j. These special modes were compared in 
Fig. 3 for the three flow patterns, where one can find that the 
values of (-lyTy vary quite regularly and with distinct 
characteristics for each of the three MODEs. The unicellular 
flow, MODE 1, has its plus values of ( - VyTyi for ally; this 
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Fig 2 Flow patterns of branching solutions for RaDa = 200, AO = 1/7, 
ty = 4,maxl7: MODE 1, unicellular flow, N = 11, ^m a x = 16.33, MODE 2, 
bicellular flow, N = 14, ^ m a x = 15.42, MODE 3, tricellular flow, N = 14, 
^max = 15.02, MODE 4, an additional flow pattern only stable in steady-
state analysis, N = 10, \f>max = 15.73 

2 3 4 5 6 7 8 9 10 11 12 13 14 

Fig. 3 Comparison of dominant modes (1, i) for three flow patterns 

Table 3 Dominant modes of three flow patterns for RaDa = 120 

MODE 1 or MODE 2 or MODE 3 or 
unicellular flow bicellular flow tricellular flow 

N-ll N=14 N=14 

mode 

1,1 
2,0 

2,1 

1,2 

3,1 

2,2 

1,0 

T. . 

-0.659 

-0.165 

0.141 

0.134 

-0.103 

-0.081 

-0.061 

mode 

1 ,1 

1,3 

2,0 

1,4 

2,1 

1,5 

3,1 

1,0 

1,2 

1,6 

T. . 

-0.508 

0.191 

-0.185 

-0.173 

0.161 

0.128 

-0.110 

-0.109 

-0.085 

-0.081 

mode 

1,1 

1,3 

2,0 

2, 1 

1 ,7 

1,8 

1 ,2 

1 ,0 

3,1 

1,9 

T. . 

-0.487 

0.170 

-0.166 

0.118 

-0.115 

0.113 

-0.112 

-0.108 

-0.092 

-0.090 

forms a temperature distribution peak at the top of the an-
nulus which corresponds to an upward flow there. The 
bicellular flow, MODE 2, has minus values of ( - l)T ly for all 
j except for j=\ if thoses of small values near zero are 
neglected. This forms a temperature distribution valley at the 
top and the peak consequently shifts to a lower angular place, 
generating a counterrotating secondary flow at the top region. 
The exception of mode (1, 1) is due to the fact that the main 
circulation is common to all three MODEs. The case of 
tricellular flow, MODE 3, is slightly different. Its temperature 
distribution has a peak at the top which is similar to MODE 1, 
while another peak also exists at a lower angular place, which 
is similar to MODE 2. So the values of ( - i y r l y have the 
nature of both MODE 1 and MODE 2. In addition, higher 
modes are involved owing to increasing vortex numbers. The 
results show that it is difficult to determine the proper trun
cating number N not knowing the flow structure. In Fig. 4, 
one can find that N= 8 is sufficient to MODE 1 and nearly 
sufficient to MODE 2, but N> 9 is necessary for generating 
MODE 3. 

Figure 5 shows the time variation of special dominant 
modes of temperature from an initial condition of Type 2 with 
N = 8. We find that mode (1, 1) has an overshoot and the other 
secondary flow modes become dominant at the same time 
about 0.09, when the flow pattern begins to change. It is 
found that MODE 4 appears firstly and then transits to 
MODE 2 as time elaspses. This fact is confirmed by in
tegrating the results of MODE 4 obtained from steady-state 
analysis, with the RaDa and N unchanged, showing that 
MODE 4 is unstable in the transient analysis. This shows the 
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0.0 

- 0 . . 

•0.2 
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(1 , j ) 

Fig. 4 Comparison of dominant modes (1, i) with different N; 
RaDa = 200 

0,3 0,1 
T I M E 

Fig. 5 Time variation of the flow pattern and dominant modes for 
RaDa = 200, N = 8, At = 0.003: MODE 4 is an unstable one 

case in which steady-state analysis gives more branching solu
tions than transient analysis does. From Fig. 6 (with 7V= 10), 
we can find that a bicellular flow is generated and then transits 
to a tricellular one through a unstable process, which sets in 
when the dominant modes (1, 7) and (1, 8) change their signs 
at a time about 0.16. It is true that, for RaDa > 150, we cannot 
obtain bicellular flow from the perturbed conduction solution, 
but we can obtain it from the steady solurions for lower RaDa 
numbers by increasing RaDa step by step. This shows us that 
MODE 2 is less stable than MODE 3 at higher RaDa numbers, 
and the latter can be considered to be more apt to become 
dominant. 

Although MODE 3 is proved to be more stable than MODE 
2 at higher RaDa numbers, we could not obtain it with a trun
cating number less than 9 under any perturbations tried. This 
indicates that insufficient N (in the present case N< 9) is not 
just a problem of accuracy; it will lead to the problem of los
ing important branching solutions at higher RaDa numbers. 

It is also worth noting that there are two options of initial 
conditions usually adopted, pure (or perturbed) conduction 
and uniform distribution of temperature. The pure (or per
turbed) condition distribution of temperature was used as the 
initial condition in present study because it is simplest for the 

TIME=0,002 0.012 0,028 0,010 

0,2 0,3 0,1 

T I M E 

Fig. 6 Time variation of the flow pattern and dominant modes for 
RaDa = 200, N = 10, At = 0.002: MODE 2 transits to MODE 3 

4.0 

3.0 

° MODE 1 
• MODE 2 
o MODE 3 

50 60 80 100 

RaDa 

200 300 

Fig. 7 Average Nusselt numbers for three branching solutions 

spectral method and also because it can avoid an overshoot in 
the early steps of time integrating from the initial uniform 
temperature distribution. Calculations, however, were also 
performed with the pure (or perturbed) uniform temperature 
distribution as the initial condition, and it was proved that the 
results about branching solutions given in the context re
mained essentially the same. The initial condition is shown in 
Appendix C, and the time-dependent results are compared 
with the previous work (Facas and Farouk, 1983). 

Bifurcation Point: Critical RaDa Number. In Fig. 7 the 
average Nusselt numbers of the three MODEs are plotted. It 
can be noted that, of the three branching solutions, the higher 
MODE appears at higher RaDa regions and has higher Nusselt 
numbers than the lower MODE. If "the maximum heat of 
flux assumption" proposed by Malkus (1954) holds, the most 
dominant one at high RaDa numbers should be MODE 3, 
which is supported by Fig. 6 where MODE 2 transmitted to 
MODE 3. In Fig. 7, emphasis is placed on the fact that, 
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RaDa 
Fig. 8 Determination of the bifurcation point of the branching 
solutions 

Table 4 Comparison of overall heat transfer rates for three flow pat
terns with values from other numerical works 

RaDa 

50 

100 

150 

200 

MODE 1 

1.341 

1.861 

2.295 

2.657 

MODE 2 

— 

2.030 

2.516 

2.903 

MODE 3 

_ — 

— 

2.601 

3.106 

other numerical 
works 

1.3284, 1.335^ 
1.363 , 1.358 * 

1.829*!, 1.844 i 

1.876 

#2 *4 
2.26 , 2.30 

*1 *2 
2.626.!, 2.63 l 

2.69 4 

*1 
*2 
*3 
*4 

Caltagirone (1976) 
Bau (1984b) 
Burns and Tien (1979) 
Echigo el al. (1978a) 

despite the change of flow pattern itself being an abrupt, 
unstable process, the difference between the overall heat 
transfer rates is continuous; this contrasts to the reported case 
of a spheric annulus (Caltagirone, 1980) in which two MODEs 
were shown. Although there is the same final restriction of the 
computer capacity as the current turbulence investigation en
counters, it is interesting to consider that we may obtain even 
higher MODEs with even finer flow structures by increasing 
the RaDa numbers and, at the same time, involving higher 
modes, which is equal to increasing grid numbers in a finite 
difference scheme. The process of determining the bifurcation 
point is shown in Fig. 8. From converged bicellular solutions 
obtained using the initial condition in Table 2, RaDa number 
is decreased step by step and at every step the converged 
steady-state solutions are obtained for the next step. This pro
cess is continued until the secondary flow at the top region 
disappears and the flow transits to the unicellular one; this 
transition is verified by the abrupt change in the values of 
dominant modes and by the plotting of the flow pattern as 
well. At the last step, much computing time was used because 
of the change of flow patterns. However, as the RaDa number 
approaches the bifurcation point, the difference between the 
Nusselt numbers of the two MODEs decreases continuously to 
zero, if the numerical error of about 0.2 percent is neglected. 
Thus, there exists a critical RaDa number at which the two 
MODEs have the same Nusselt numbers so that at that critical 
point the change of flow patterns will not exert any influence 
on the surroundings of the annulus as a whole when we con-

M0DE1 
« NUMERICAL RESULTS BY 

CALTAGIR0NEQ976) 
Nu, 

Fig. 9 Local Nusselt numbers for three branching solutions, MODE 1, 
MODE 2, and MODE 3, as shown in Fig. 2 

sider the total energy balance. This bifurcation point, 
therefore, might be a critical one for the onset of unstable 
phenomenon. Compared with experimental data 65 ±4 
(Caltagirone, 1976), the numerically determined critical value 
corresponding to the onset of secondary flow in the present 
study is 65.5±0.5. The value is slightly smaller than that at 
which a perturbation of the one-dimensional periodic wave 
along the direction of the axis of the annulus becomes 
unstable, 67.0, as estimated by a simplified stability analysis 
(Caltagirone, 1976). 

It is necessary to be noted that in Caltagirone's experiment 
the flow was reported to have changed to a three-dimensional 
fluctuating spiral one rather than the bicellular one, so the 
critical value obtained here agrees with his experimental data 
in a sense that both represent the critical value under which 
two-dimensional unicellular flow is the unique flow pattern. 
There is, however, no reason to exclude the possibility that 
this bicellular flow occurs in the experiment at a RaDa number 
above but not far from the critical one, with the experimental 
perturbations minimized. 

Another bifurcation point in Fig. 7 is obtained with a 
similar procedure. MODE 3 is found to transit to MODE 1 
rather than MODE 2 when RaDa is decreased step by step; this 
can be explained by the similarity of their flow structures at 
the top region of the annulus. There also exists an intersection 
point of MODE 2 and 3. The Nusselt numbers of MODE 2 
becomes smaller than those of MODE 3 when the RaDa 
number exceeds that point, and MODE 2 becomes apt to 
change to MODE 3 under perturbations; this needs verifica
tion by experiments that take bifurcation into consideration. 

Influence of Flow Patterns on Overall Heat Transfer. In 
Table 4, the overall heat transfer rates are listed for the three 
MODEs and compared with the data from previous works by 
finite-difference methods. The Nusselt numbers for MODE 1, 
the unicellular flow, agree very well with those from previous 
works and will be taken to represent them later. No data, 
however, are available to compare with those for MODE 2 
and MODE 3, which deviate from MODE 1 by a large margin, 
up to 14 percent. 

In Fig. 9 local heat transfer rates are plotted. MODE 1 is 
compared with solutions by Caltagirone (1976); the agreement 
is satisfactory. MODE 2 and MODE 3, depending upon the 
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Fig. 10 Comparison of overall heat transfer rates for three branching 
solutions with experimental data 

flow structure, give more peaks and valleys in distributions of 
local heat transfer rates, which enhances overall heat transfer. 
These numerical results are compared with experimental data 
in Fig. 10, where we can find that the Nusselt numbers for 
MODE 1, or previous works, depart from the experimental 
data when the RaDa number exceeds about 65.5, and the 
deviation increases with the increasing of the RaDa number. 
The values for MODE 2 and MODE 3, the bicellular and 
tricellular flows, agree better with experimental results in the 
moderate and higher RaDa regions, respectively. 

Although the present study is restricted by the limitation of 
two-dimensional analysis and by the symmetry conditions, it 
gives major characteristics of flow patterns and heat transfer, 
and is very informative, since the transient, asymmetric three-
dimensional numerical analysis in this system would be, if not 
impossible, formidably costly considering the current capacity 
of computers. 

Conclusion 
Numerical results have been presented for an inner-heated 

horizontal cylinderical porous annulus of radius ratio 2.0, 
with RaDa numbers ranging from 1 to 300, which covers the 
experimental data available. Through investigation of flow 
patterns, the dominant modes, and the bifurcation 
phenomenon, the following conclusions were obtained: 

1 Branching solutions in which higher modes are dominant 
appear one after another with increasing RaDa numbers; this 
causes the flow pattern to change to a finer structure. Three 
MODEs of flow patterns were found corresponding to dif
ferent initial conditions. 

2 The bifurcation is not abrupt but continuous on the 
Nu-RaDa plane. There exists a critical RaDa number at which 
two MODEs of quite different flow structure have the same 
overall heat transfer rates so that the unstable phenomenon 
can be considered to occur easily. 

3 The numerically determined bifurcation point at which 
the secondary flow occurs agrees remarkably well with the 
critical RaDa number from experimental observations. 

4 In the higher RaDa region, overall heat transfer rates 
calculated from multicellular flows agree much better with ex
periment data than those from previous works or from 
unicellular flow. 

5 The exact solutions from first-term approximation can be 
used as a convenient and effective evaluation of flow con
figuration and heat transfer rates at lower RaDa numbers. 

6 The steady-state analysis is found to produce additional 
branching solutions that are unstable in transient analysis. 

7 By using an insufficient truncating number N, we will risk 
losing the branching solutions of the higher MODE important 
at high RaDa number regions. 

8 The rational Runge-Kutta methods has a very attractive 

feature due to its stability at much larger time intervals, and is 
highly efficient to the nonlinear ordinary differential systems 
derived from natural convection problem. 
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A P P E N D I X A 

The coefficients of equations (10) and (11), corresponding 
to trial function 1, are 

Ci(m,n)=- [ l - ^ ( - i r ] 5 „ , / C 4 

C2(i, m, n) -• 

2(a2 + m2) 

im[R(-\y-m-\] 
4[a2 + (i + m)2)][a2 + (i-m)2] 

(2a2/? + a2 + i2 - m2)/C4 

(Al) 

(A2) 
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im[R(-l)'-m-l] 
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where 

^ ir2 / , m2 \ 
[4ff2 + (p + /)2][4a2 + ( p - / ) 2 ] 

where 

C j ( / , y , P , 9 ) = ( - ^ ) D^Dfl^j 

1(1+80j)(p-i)(q-j)-ij] 

Xn 
i-4r(-iy+i+p 

C6(q) = -—q 
4 

(A5) 

(A6) 

(B7) 

(B8) 

(B9) 

(BIO) 
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where 
r i (x>o> 

2?, = ^ 0 (x = 0) 
L-l (*<0) 

stands for the Dirichlet function. 

A P P E N D I X B 

The coefficients of equations (14) and (15), corresponding 
to trial function 2, are 

C{ Km, n) =2{a2
m

+m2} [1 ~R( ~ l)ra]5„,/C4' (Bl) 

fTT2 

C{(i, m, n) = [— naS,„, + [(-1)'+'" - 1] 

iirnr ~) 
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A P P E N D I X C 

The initial condition of the uniform temperature distribu
tion is G = 0 (at f = 0), i.,e., 

In r 
7+1 = 0 

InR 
(CI) 

Expanding (In r/In R - 1) with the trial function series Mr sin 
(I/a In /-/In J?)cos j4>, we obtain the resulting condition as 
follows: 

(C2) 

4(;2 - m2) -
(B2) 

all Tjj = 0 except 

r 2/ r 2 a [ ( - 1 ) ^ - 1 ] - ) 
,0 7r(a2 + /2) I Tr(a2 + i2) i 

In Fig. CI, the time-dependent results are compared with the 
previous data (Facas and Farouk, 1983). The time interval 
here is taken as 0.001, the same as that used in their work. 

fTT2 
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A Numerical Model of the Flow 
and Heat Transfer in a Rotating 
Disk Chemical Vapor Deposition 
Reactor 
Steady, laminar, axisymmetric, and circumferentially uniform flow and heat 
transfer, including the effects of variable properties and buoyancy, have been 
modeled within a rotating disk chemical vapor deposition (CVD) reactor. The reac
tor is oriented vertically, with the hot, isothermal, spinning disk facing upward. The 
Navier-Stokes and energy equations have been solved for the carrier gas helium. 
The solutions have been obtained over a range of parameters, which is of impor
tance in CVD applications. The primary parameters are the ratio of the disk 
temperature to the free stream temperature Tw/T„, the disk Reynolds number 
Re = r2

dw/v0„, a mixed convection parameter Gr/Re3'2 = g(pm - pw )/(pVJio-Jwv^), the 
dimensionless inlet velocity u^/Vuv^, and two geometric parameters r0/rd and 
L/rd. Results are obtained for the velocity and the temperature fields and for the 
heat flux at the surface of the rotating disk. Comparisons are made with the one-
dimensional, variable-property {excluding buoyant effects), infinite rotating disk 
solutions of Pollard and Newman. Results are presented in terms of a local Nusselt 
number. The potential uniformity of CVD in this geometry can be inferred from the 
variation of the Nusselt number over the surface of the rotating disk. The effects of 
buoyancy and the finite size of the rotating disk within the cylindrical reactor are 
clearly evident in the present work. 

Introduction 
Chemical vapor deposition (CVD) is an important process 

for fabricating microelectronic circuits. A wide variety of 
semiconductors can be made using this process, and a large 
degree of control can be exerted over the deposition by alter
ing the composition and concentration of active species in the 
gas phase. Individual layers of materials can be deposited on a 
substrate by introducing various active species into the gas 
stream in the desired sequence and the rates of deposition with 
CVD can be of the order of microns/minute. Although the 
potential exists for obtaining uniform deposition, the deposi
tion process is dependent on the flow and the heat transfer 
from the heated substrate to the gas, especially when deposi
tion occurs near atmospheric pressure. Convection in the gas 
phase becomes a consideration of increasing importance, 
especially when high deposition rates are desired. The 
geometry of the reactor is important because, in order to 
replenish the reactants, the gas must be continuously passed 
over the heated substrate. Recirculation of the gas due to 
geometry or buoyant effects has a strong effect on the unifor
mity of the heat transfer and consequently the mass transfer. 
Because of the importance of gas phase chemistry in the CVD 
process, as pointed out by Coltrin et al. (1984) for the deposi
tion of Si from SiH4, understanding the convection and diffu
sion processes also becomes important. Most CVD reactors 
consist of a forced flow past a heated substrate in a channel. 
The growth of the momentum, energy, and concentration 
boundary layers along the substrate leads to nonuniform sur
face fluxes and research is being conducted to understand and 
quantify the phenomena (Giling, 1982; Kapur et al., 1985; 
Stock and Richter, 1986). 

Two geometries that ideally yield uniform boundary layers 

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division July 22, 
1986. 

and uniform deposition are the infinite planar or axisymmetric 
stagnation flow and the infinite rotating disk flow (see White, 
1974). Hitchman and Curtis (1982) examined epitaxial deposi
tion of Si from SiCl4 in a rotating disk reactor and developed a 
simple one-dimensional theory to explain their results. They 
noted, however, that the flow in the reactor could not be 
described in terms of the infinite disk solutions. Pollard and 
Newman (1980) performed a theoretical study of CVD of Si 
from SiCl4 near a rotating disk. They used the von Karman 
(1921) similarity transformation to obtain an ODE boundary 
value problem describing the transport of mass, momentum, 
and energy. Their study included the effects of variable gas 
properties. However, the effects of geometry and buoyancy 
were not considered due to the one dimensionality of the 
study. Recently, Houtman et al. (1986) performed a numerical 
study of two-dimensional, axisymmetric, steady transport 
within a stagnation flow reactor. The effects of buoyancy and 
finite geometry on the heat transfer were obtained and results 
were presented in terms of the region over which a one-
dimensional solution would apply. 

Analysis 

In many cases of CVD the active species exist in only small 
concentrations relative to the carrier gas so that the solution of 
the continuity, momentum, and energy equations for the car
rier gas can be separated from the solution of the species mass 
conservation equations. For certain system operating 
parameters the heat flux at the surface may be essentially 
uniform. The equations governing the transport of mass (for 
Fickian diffusion) and energy are similar and, provided that 
the boundary conditions for species transport are uniform 
over the surface, these same system parameters that result in 
uniform heat transport would also be expected in many cases 
to produce uniform mass transport (deposition). The purpose 
of this paper is to obtain the local heat transfer for the carrier 
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Fig. 1 Geometry and coordinate system of rotating disk reactor 

gas over a range of the operating parameters that are impor
tant in CVD. By determining the domain of these parameters 
that yields uniform surface heat flux, an understanding of the 
operating regime that produces uniform deposition can be 
obtained. 

The present study is similar to that of Houtman et al. 
(1986); however, this work considers a rotating, heated, cir
cular disk (Fig. 1). The disk of radius rd is centered within a 
larger, stationary cylindrical tube of radius r0. The spin axis of 
the disk is aligned with the axis of the tube and with the 
gravitational vector. As shown in Fig. 1, g*is in the — x direc
tion (the heated disk faces vertically upward). The gas is 

helium and the flow field is assumed to be laminar, steady, 
axisymmetric, and circumferentially uniform. Boundary layer 
assumptions are not made since recirculating flow may occur 
due to the finite geometry and the buoyancy associated with 
the heated surface facing upward. Helium at ambient 
temperature, Tx = 300 K, enters the reactor at x = L with no 
rotation and as it moves toward the disk at x = 0 begins to 
rotate. At the edge of the disk (r = rd) the gas turns downward 
and leaves the reactor through the annular region (rd<r<r0) 
below the disk (-L0 < x < 0 ) . For the purposes of the analysis 
the disk is assumed to have zero thickness and the region 
directly underneath the disk (Q<r-<rd, ~L0 < x < 0 ) does not 
rotate and is not part of the solution domain. The local heat 
transfer on the surface of the rotating disk has been deter
mined to be insensitive to the thickness of the disk. 

The governing equations in cylindrical coordinates are: 

Continuity: 
1 ri rl 

— — (p™)+ — (pw) = 0 
r or ax (1) 

Axial (x) component of momentum: 

1 o d dp* 1 d r (du 
z-(rpvu)+ — (puu) = — pg + — />( — 

r or ox dx r dr L \ or 
dv\ 

+ lx-)\ dx 

du 2 - -."1 
2^-T"(v-y)J (2) 

Radial (r) component of momentum: 

pw2 dp* 

r dr 

1 d d 
-r-(rpvv)+—-(pvu 

r dr dx 
1 d 

r dr 14 dv 2 _ -~n a r v 2 -. ->1 

I T - T ( H J - T L V - T ( H 

dx ['(£•-£)] (3) 

Nomenclature 

p 
F = 
G = 

Gr 
Gr/Re3/2 

H 
k 
k 
L 

L0 

Nu 
P 

P 
p* 
Pm 

Pm 
Pr 
R 
r 
f 

Re 

specific heat, J/(kg-K) 
dimensionless radial velocity 
dimensionless circumferential velocity 
acceleration of gravity, m/s2 

Grashof number = g(l-pwyd/(pwvQ 
mixed convection parameter = 
g(l-pw)/(pw<<>VwO 
dimensionless axial velocity 
thermal conductivity, W/(m-K) 
dimensionless thermal conductivity 
distance from reactor inlet to rotating disk, m 
distance from rotating disk to reactor outlet, 
m 
Nusselt number = 9 6 / a x l i = 0 

dimensionless dynamic and hydrostatic 
pressure 
pressure, Pa 
dynamic and hydrostatic pressure, Pa 
dynamic pressure = p*+paogx, Pa 
dimensionless motion pressure 
Prandtl number = {cpjx/k) l„ 
gas constant, J/(kg-K) 
radial coordinate, m 
dimensionless radial coordinate 
disk Reynolds number = rdu>/vm 

T 
u 
u 
V 

V 

w 
w 
x 
x 
V 

e 
e 

V 

p 

p 

Subscripts 

d 
o 
w 

temperature, K 
axial velocity, m/s 
dimensionless axial velocity 
radial velocity, m/s 
dimensionless radial velocity 
circumferential velocity, m/s 
dimensionless circumferential velocity 
axial coordinate, m 
dimensionless axial coordinate 
dimensionless axial coordinate 
dimensionless temperature 
circumferential coordinate 
dynamic viscosity, kg/(m-s) 
dimensionless dynamic viscosity 
kinematic viscosity, m2 /s 
density, kg/m3 

dimensionless density 
disk spin rate, s~' 

evaluated at the radius of the disk 
evaluated at the radius of the reactor 
evaluated at the surface of the disk 
evaluated at the inlet of the reactor 
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Circumferential (6) component of momentum: 

— (rpvw) + — (puw) 
r or dx 

pVW 1 a 
~dr 

r , d / w\~\ d / dw\ 

Energy equation: 

-~(rpvT) + -T-{puT) 
• or dx 

1 
(5) 

9 / k dT\ d / k dT\ 
r dr V cp dr / dx V cp dx / 

In the above energy equation, viscous dissipation and com
pressibility effects have been neglected, and the specific heat is 
assumed to be constant at 5192.6 J/(kg-K). The equation of 
state for an ideal gas is used in the analysis 

P=p/RT (6) 

In equations (2) and (3), p* includes the dynamic and 
hydrostatic components of the pressure. The pressure/?, which 
appears in equation (6), is assumed to be constant. This 
method of treating pressure is valid for flows with a small 
Mach number (Paolucci, 1982). The dynamic viscosity and the 
thermal conductivity are determined from the Chapman-En-
skog equations1 

M = 26.69xl0- 7VMr/(a 2 f i„) ,^ inkg/(m-s) (7) 

(8) /c = 8.326x \Q'NT/M/{o2Q,„), k in W/(m-K) 

The set of parameters which will be used to characterize the 
gas flow and the heat transfer within the rotating disk reactor 
of Fig. 1 are obtained from the nondimensionalization of 
equations (l)-(5) and from the geometry and the boundary 
conditions of the problem. The similarity transformation of 
van Karman (1921) has been used with the finite radius of the 
disk replacing the variable radial coordinate. The viscous 
length scale for the axial coordinate allows for adequate 
resolution of the important gradients of velocity and 
temperature at the surface of the disk. The radial coordinate is 
scaled with the radius of the disk. The gas properties are scaled 
with their values at the inflow boundary. 

Specifically, the transformation f = r/rd, x = xsfo>/v<x,, 
it = u/4uvl>, v = v/{rdu>), w = w/(rdoi), pm=pm/(n„w), 
Q=(T-T„)/(TW-Tm), p = p/Pa>, JX = IX/II„, k = k/k„ ap
plied to equations (l)-(5) results in the following dimen-
sionless equations: 

1 " - - - " - - • =0 (9) -TT-(pfv) + — (pu)--
dr dx 

1 d d dp„, 
— —(rpvu)+-—(puu) = — — -
r dr dx dx 

Gr p „ ( l - p ) 
Re3/2 

3 1 d f / 1 du dv\\ d ( 

O-Pj 

du 

•H 
a du~\-) 

(10) 

I a a pw2
 I dp,„ 

— ~(rpvv) + -—(pvu) — = - — — 
r dr dx r Re dr 

The collision integral, S!u, is given by Reid et al. (1977) as 

ac- 4̂ = 1.16145, B = 0.14874, T* = —T, •-10.22 K 

1 1 3 r r dv 2 / 1 3 du 
df dx •)]) 

1 

"R7 
i a __ du-ri 
f df dx \) f i r 3 L 

dx r \ R e df dxJi (ID 

1 d , - - - s , d ,- - --v P V W 

—r—(rpvw) + —-(puw)= — 
r dr dx r 

1 1 3 

Re r & 
a r , a / v>\\ a / dw\ 
17r^(T)J + aFTO) (12) 

— — (fP0Q) + — (pu9) 
r dr dx 

_ j _ j _ j _ _ a / ae\ 1 a / .ae \ 
~lie~~p7T"a7v ~~df~)+rp7~dx~\ ~dx~) 

The boundary conditions are: 

ae 
u = v = w = —_- = 0 for f = r0/rd 

dr 

(13) 

and -Lg-slu/Va, <x<L\lw/va 

ae 
u = v-w = -— = 0 for f=\ and -Lo\fw/va,<x<0 

d(u, 9) . 
y = w = —— = 0 for f=Q and 0<i<ZVco/c„ (14) 

dr 

ii = v = 0, w = f, G = 1 for x=0 and 0 < r < l 

v = w = Q = 0, ii=H\ „ for x — LsfwTv 

and 0<f<ro/rd 

d{u, v, w, 9) 

dx 
= 0 for x= -L^w/Vv, 

and \<f<r0/rd 

a = 2.551 A is the collision diameter and M is the molecular weight. 

where //!, ,_„ is the dimensionless axial inflow velocity from 
the one-dimensional solution to be presented. Note that the in
let velocity distribution is uniform over the inlet plane. 

The dimensionless parameters appearing in these equations 
are the disk Reynolds number Re = rdw/v„, the mixed convec
tion parameter Gr/Re 3 / 2 =g( l - pw)/(pww*Joiva,), where 
Gr = g( l - pw)rd/(~pwvl,), and the P r a n d t l number 
~Pr = (cpix/k) l„. The temperatures of the disk and the inlet 
stream are also parameters which determine the variable prop
erty ratios: /*//*„, k/kx, and p/p„. The geometric parameters 
are r0/rd and L/rd. It will be shown later that for small values 
of Gr/Re3/2 there is no recirculation of the flow above the 
rotating disk. In this situation, L/rd is not an important 
parameter in the problem, provided the inflow boundary is 
sufficiently far from the disk (greater than a boundary layer 
thickness). However, when Gr/Re3/2 is large enough for recir
culation to occur L/rd will be shown to be an important 
parameter. Houtman et al. (1986) have shown that L/rd is a 
significant parameter in the study of axisymmetric stagnation 
flow reactors. The effect of the geometric ratio L0/rd that 
specifies the outflow region has not been considered in this 
study; the outflow length L0 has been taken large enough for 
fully developed flow conditions to apply at the outflow 
boundary. The inlet velocity distribution is an additional 
parameter that enters the problem through the specification of 
the boundary conditions. By varying the parameters over 
ranges of interest in CVD, operating regimes which would 
result in uniform heat transport, and by analogy, uniform 
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Fig. 2 Geometry and coordinate system of infinite rotating disk 

mass transport, in a rotating disk reactor can be determined. 
Equations (9)-(13) have been solved numerically, subject to 
the boundary conditions (14). 

Solution Method and Convergence Criteria 

Equations (9)—(13) are integrated over control volumes and 
finite differences are used to discretize derivatives on the cylin
drical grid. A combination central/upwind difference method 
is used for convective terms, with central differences applied 
to the diffusive derivatives. The solution method is semi-
implicit and is based on the TEACH code (see Gosman and 
Pun, 1973). The method is semi-implicit because the solution 
algorithm consists of a tridiagonal "one variable at a time" 
solution, which is repeated until convergence criteria are 
satisfied. The SIMPLER method described by Patankar 
(1980) is used to determine the pressure field. The criteria for 
convergence are: For each equation /, where / represents one 
of the dependent variables u, v, w, Q,p,„ 

1 
— Y\ Ires,- I,<0.01 Iterm L 
N ~~x 

(15) 

where Ires,- \j is the absolute value of the residual of the /th 
equation for the y'th control volume, and N is the number of 
control volumes. In this inequality, Iterm I, is the absolute 
value of a characteristic term in the /th equation, evaluated 
near the edge of the rotating disk. When these criteria are 
satisfied, the change per iteration proved negligible (with the 
change for 500 iterations being less than 1.0 percent). 

One-Dimensional Solution 

The von Karman (1921) transformation reduces the three-
dimensional Navier-Stokes equations governing the isother
mal flow about an infinite rotating disk to a system of cou
pled, ordinary, nonlinear differential equations. Millsaps and 
Pohlhausen (1952) extended the analysis to include heat 
transfer from an isothermal disk and Sparrow and Gregg 
(1960) included mass injection or suction from the disk sur
face. Pollard and Newman (1980) allowed variable fluid prop
erties in their study of CVD of Si from SiCl4 near a rotating 
disk; however, the effects of buoyancy could not be included 
since only the pressure distribution in the axial direction, 
which is uncoupled from the determination of the velocity and 
temperature field in such an analysis, would have been af
fected. The solution of the equations of Pollard and Newman 
(1980), restricted to a single component gas, will be used for 
comparison purposes when the local heat transfer results are 
presented. This solution will also be used in the following sec
tion to verify the two-dimensional computer code. Utilizing 
the similarity transformation for the infinite rotating disk (see 
Fig. 2), equations (1), (3)-(5) yield the following: 

F2-G2+F'H (jXF') = 0 
P at) 

IFG+G'H (£G') = 0 
P at) 

HQ1 l I 
PrM p dt) 

ikQ') = 0 

(17) 

(18) 

(19) 

where i\ = x = x4ujv~„ , F(r\) = v/(roi), G (?j) = w/ (ro>), 
H{r,)=u/Juva, e ( ^ ) = ( r - r < x > ) / ( r i v - r o o ) . The boundary 
conditions are 

F=H=0, 9 = G = l for i? = 0 

G,F, G - 0 for rj-oo (20) 

d(\n p) 
2F+H'+H =0 

drj 
(16) 

Primes denote differentiation with respect to 77. Since equa
tions (16)-(19) are restricted to a single component gas and are 
a subset of the equations solved by Pollard and Newman 
(1980) and the conditions of interest are different from those 
presented in their paper, we have solved equations (16)—(19) 
with a block tridiagonal, finite difference scheme, employing 
Newton's method. Properties have been evaluated using equa
tions (7) and (8). Values of H\ri_00 and - 6 ' ( 0 ) obtained from 
the solution of equations (16)-(19) for helium have been given 
in Table 1 for several disk temperatures. 

Verification of Computer Code and Adequacy of Grid 
Resolution 

Although an experiment is being planned, there are no ex
perimental data available for comparison with the numerical 
results to be presented in the next section. In order to evaluate 
the two-dimensional computer code, the continuity, 
Navier-Stokes, and energy equations (9)-(13) were solved over 
the domain shown in Fig. 2. Note that the geometry of Fig. 2 is 
a limiting case of that of Fig. 1, which is obtained by letting 
r0/rd-~<x and restricting the solution domain to the region: 
0<r<rd, 0<x<L. The boundary conditions that are used at 
the inflow boundary, along the symmetry axis, and on the 
rotating disk are the same as conditions (14). The outflow 
boundary conditions are 

du dw dQ d 
—— = = = —-(pry) = 0 for f=\ 
or or or or 

and 0<x<LVco7i^ (21) 

The numerical solution of equations (9)—(13) with boundary 
conditions (21), over the domain of Fig. 2, referred to as the 
2Z)inf solution, has been compared with the numerical solution 
of equations (16)—(19), referred to as the \D solution. Detailed 
comparisons have been made but, due to space limitations, are 
not presented here. As a specific example, for T„ = 1100 K, 
Re = 1000, Gr/Re3/2 = 2.2, and L/rd = 2.16, the local heat flux 
and the local values of the radial and the axial shear stresses 
obtained from the 2Dinf solution agree with the result from the 
ID solution to within 0.2 percent at any radial position on the 
disk. For the geometry of Fig. 2, even at this nonzero value of 
the mixed convection parameter, the flow is essentially one-
dimensional. It is noted that for this disk temperature and Re, 
the W disk heat flux agrees with the 2Z)inf solution to within 
0.5 percent for Gr/Re3/2 as large as 7.7. This is not the case for 
a rotating disk within a cylindrical tube, as will be shown later. 

For the domain of Fig. 1, where the rotating disk is situated 
within the cylindrical reactor, equations (9)—(13) with bound
ary conditions (14), referred to as the 2D solution, were 
solved on an equally spaced radial grid with Ar = 0.0256 and a 
nonuniform axial grid with grid lines concentrated near the 
disk, with the value of Ax near the disk equal to 0.002882. 
This grid spacing resulted in 4420 control volumes. The ade
quacy of this grid was checked. For 7^ = 800 K, Re= 1000, 
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Fig. 3 Dimensionless radial and axial velocity vector field (a) and 
temperature contours (b) in rotating disk reactor: Tw = 1100 K, 
Re = 1000, Gr/Re3'2 = 2.2, r0/rd = 1.28, L/rd = 2.16 

Fig. 4(b) 

Fig. 4 Dimensionless radial and axial velocity vector field (a) and 
temperature contours (b) in rotating disk reactor: Tw = 1100 K, 
Re = 1000, Gr/Re3'2 = 6.2, r0/rd = 1.28, L/rd = 2.16 

Gr/Re3/2=4.0, r0/rd= 1.28, and L/rd = 2.16, calculations of 
the local values of the disk heat flux and the disk radial shear 
stress changed by only 0.01 to 0.07 percent (compared at all 
radial locations on the surface of the disk) when the axial grid 
spacing was doubled to 0.00576. For the same values of the 
parameters, the local values of the disk heat flux and the disk 
shear stress changed by only 0.01 to 0.1 percent when the 
radial grid spacing was decreased by 20 percent to 0.020408. 

Results 
The velocity and the temperature fields and the local heat 

transfer from the solution of the two-dimensional equations 
(9)-(13) with boundary conditions (14), over the domain of 
Fig. 1, referred to as the 2D solution, are presented in this sec
tion. The dimensionless parameters that influence the heat 
transfer from the rotating disk are varied to determine the 

operating regimes that result in uniform surface heat flux and 
by analogy uniform mass flux. The regimes which yield agree
ment with the ID solution of Pollard and Newman (1980) are 
also determined. An understanding of the ranges of the 
operating parameters that yield agreement with the W solu
tion is valuable not only for the prediction of uniform surface 
heat flux, but also because research reactors operating within 
the one-dimensional regime can be used to study complex 
chemical reaction mechanisms. 

Figures 3(a) and 3(6) show the radial and axial velocity vec
tor field (the circumferential component is not included) and 
the temperature field in a region near the rotating disk for 
rw = 1100 K, Re =1000, Gr/Re3/2 = 2.2, r0/rd = 1.28, and 
L/rd = 2.16. It is noted that the number of arrows displayed in 
Fig. 3(a) does not correspond to the number of grid points 
used to obtain the solution. Rather, the number of arrows 
shown is limited for clarity and the vectors are obtained by in-
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Table 1 H I and Nusselt number for the 1D situation for helium 
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Fig. 5 Variation of local Nusselt number with radial position as a func
tion of disk temperature for small and large values of Gr/Re3'2; 
Re = 1000, r0/rd = 1.28, Urd = 2.16 
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Fig. 6 Variation of local Nusselt number with radial position as a func
tion of disk Reynolds number for two values of Gr/Re3'2; Tw = 1100 K, 
tpl'a =,1.28, t / rd=2.16 for Gr/Re3'2 = 6.2; various Urd used for 
Gr/ReA = 2.2 

terpolation of the calculated data. There is no recirculation of 
fluid in the region above the disk and the temperature field is 
highly uniform, indicating that most of the disk (except for the 
region close to the edge) is uniformly accessible for mass 
transfer. The local disk heat flux is 1 percent larger than the 
W value at r = 0.1, increases to 10 percent larger than the ID 
value at r = 0.9, and then rapidly increases for r>0.9 (see Fig. 
6 for this case). Figures 4(a) and 4(b) show the results that are 
obtained with the same parameters as in Figs. 3(a) and 3(6) ex
cept that the mixed convection parameter, Gr/Re3/2, is now 

r„ (K) n\, Nu1D = -e'(o) 

800 

1100 

1400 

-0.8043 

-0.7754 
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0.14543 
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-

" 
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1 1 1 1 

r„/rj=1.28 
r„/rd=1.54 

Gr/Re3/2 = 5.6 

'el'd =128 

tolu =1.54 

Gr/Re3/2 = 1.6 

0.4 0.6 
r/'d 

Fig. 7 Variation of local Nusselt number with radial position as a func
tion of the radial aspect ratio, r0/rd, for two values of Gr/Re3'2; Tw = 800 
K, Re = 1000, Urd = 2.16 

6.2, a value large enough for recirculation to occur. For this 
recirculating flow, the local disk heat flux is 42 percent larger 
than the W value at r = 0.l, decreasing to a value that is 28 
percent larger than the W value at f=0.9. 

In Figs. 5-9 the dimensionless heat transfer is presented in 
terms of the Nusselt number based on the viscous length scale 
^va/w divided by the one-dimensional Nusselt number 
Nulfl = -9 ' (0) (Table 1) as a function of the radial position 
on the rotating disk. The local variation of the Nusselt number 
for Tw = 800, 1100, and 1400 K is shown in Fig. 5 (Re = 1000, 
r„/rd= 1.28, L/rd = 2A6). For each disk temperature, the heat 
transfer is presented for two values of the mixed convection 
parameter. For the smaller value of Gr/Re3/2, there is no recir
culation of the gas and the heat transfer is very uniform over 
most of the disk except close to the edge where the flow turns 
the corner and leaves the reactor. However, for the higher 
value of Gr/Re3/2, a recirculation region does exist near the 
reactor wall. This results in an acceleration of the incoming 
flow near the axis of symmetry and leads to higher heat fluxes. 
Note that the heat transfer is still reasonably uniform over the 
central portion of the disk. When a recirculation zone exists 
the local heat transfer is larger for a smaller value of Tw. This 
is due to the proximity of the recirculation zone to the surface 
of the disk (the zone being closer to the disk for a lower disk 
temperature) which leads to higher gas velocities between the 
rotating disk and the recirculation zone and thus higher heat 
fluxes. 

The local variation of the Nusselt number over a Reynolds 
number range from 500 to 5000 for 7V, = 1100 K and 
r0/rd = 1.28 is shown in Fig. 6. For Gr/Re3/2 = 6.2, the value 
of L/rd was 2.16 for all Re, whereas various values of L/rd 
were used for Gr/Re3/2 = 2.2. It will be shown later that the 
results are insensitive to this aspect ratio for small Gr/Re3/2. 
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Fig. 8 Variation of local Nusselt number with radial position as a func
tion of the axial aspect ratio, L/rd; Tw = 800 K, Re = 1000, Gr/Re3/2 = 5.6, 
r0/rd = 1.28 

For Re = 500, there is no recirculation for either of the two 
values of Gr/Re3/2. The heat transfer is reasonably uniform 
over most of the disk and the ID solution is valid except close 
to the edge of the disk. However, for Re =1000, there is a 
large recirculation region for Gr/Re3/2 =6.2. Even with the 
recirculation region, the heat transfer is uniform over the 
central portion of the disk but the magnitude of the heat flux 
is significantly larger than that given by the ID solution. For 
Re = 5000, the recirculation region for Gr/Re3/2 = 6.2 is 
smaller and the heat flux is more uniform over the disk and in 
better agreement with the ID result. This trend of decreasing 
size of the recirculation region with increasing Re above 1000 
was also obtained for intermediate values of Re between 1000 
and 5000. 

The effect of radial aspect ratio, r0/rd, on the local Nusselt 
number is shown in Fig. 7 for two values of Gr/Re3/2. The 
results are for r„, = 800 K, Re =1000, and L/rd = 2A6. For 
Gr/Re3/2 = 1.6, the Nusselt number variation over the disk is 
only slightly larger as r0/rd is decreased from 1.54 to 1.28 and 
the agreement with the ID solution is excellent over most of 
the disk except for a small region close to the edge of the disk. 
However, for Gr/Re3/2 = 5.6, the effect of decreasing the 
radial aspect ratio is dramatic. For r0/rd = l.54, agreement 
with the ID solution is again excellent over the central region 
of the disk. However, for r0/rd = 1.28, the heat transfer is 
much larger than the \D result (about 40 percent) and a 
significant variation in the heat transfer occurs for r/rd>0.5. 

The effect of the axial aspect ratio, L/rd, on the local 
Nusselt number is shown in Fig. 8 for three values of L/rd. 
The results are obtained for riv = 800 K, Re =1000, 
r0/rd=1.28, and Gr/Re3/2 = 5.6. As L/rd is increased from 
2.16 to 5.76, the variation of the local Nusselt number 
becomes much larger. Analysis of the velocity fields for these 
aspect ratios shows that the recirculation region becomes more 
vigorous as L/rd increases. As Gr/Re3/2 is decreased there is a 
smaller effect of the axial aspect ratio on the heat transfer. For 
example, although not shown, there is no effect of the axial 
aspect ratio on the local Nusselt number for Gr/Re3/2 = 1.6, 
provided that L/rd is greater than the thickness of the boun
dary layers on the rotating disk. 

For the results previously discussed, the specified inlet 
velocity, u \X=L, was uniform over the reactor radius, r0 (case 
I), with a magnitude given by the solution for the infinite disk 
as listed in Table 1 (w \X=L =//!,,_„). The sensitivity of the 
local Nusselt number to the inlet velocity was determined by 
considering two additional inlet velocities. For one condition, 
the distribution of the inlet velocity was changed by applying 

S I , = L = -0.8043,0 < f < rcfrd 

" l „ L = -0.8043,0 < f < 1; s= 0. f > 1 

"L=L = -0.4894,6 < f < r0/rj 

G r / R e 3 / ^ 5.6 

-0.8043,0 < f < r0/rd 

&I,=L = -0.8043,0 < f < 1: = 0,f > 1 

«I,=L - -0-4894,0 < r < rQ/rd 

Gr/Re3/2 = 1.6 

Fig. 9 Variation of local Nusselt number with radial position as a func
tion of the inlet velocity, li \X = L, for two values of Gr/Re3/2; Tw = 800 K, 
Re = 1000, r0/rd = 1.28, Urd = 2.16 

the infinite disk inlet velocity uniformly from r = 0 to r= 1 and 
setting the inlet velocity to zero for r> 1 (case II). For the 
other condition, the inlet velocity was uniform over the entire 
cross section (0<f<ro/rd), with a value determined from 

=H\„J(r0/rdY (case III) (22) 

The effect of inlet velocity on the local Nusselt number is 
shown in Fig. 9 for these three cases and for two values of 
Gr/Re3/2. These results are obtained for rw = 800 K, 
Re =1000, rjr„ = \2%. and L/rd = 2.16. For Gr/Re3/2 = 1.6, 
case I yields uniform heat transfer over most of the disk (and 
agrees with the ID solution), but the other two inlet velocities 
result in large variations over the disk. For Gr/Re3/2 = 5.6, all 
the curves show significant variations over the disk radius, the 
most dramatic variation corresponding to case II. A uniform 
inlet velocity distribution would be relatively easy to produce 
experimentally and it is fortunate that this distribution (case I) 
results in uniform heat flux over most of the rotating disk and 
also yields good agreement with the ID solution for small and 
moderate values of Gr/Re3/2. 

Summary and Conclusions 

Numerical solutions of the Navier-Stokes equations and the 
energy equation have been obtained to predict the heat 
transfer and fluid flow in a rotating disk CVD reactor. The ef
fects of buoyancy, variable properties, and finite geometry 
have been included. The dimensionless parameters that in
fluence the heat transfer from the rotating disk have been 
varied to determine the operating regimes that result in 
uniform surface heat flux and by analogy uniform mass flux. 
The results should be useful for the design and operation of 
similar CVD reactors. The regimes which yield agreement with 
the \D solution of Pollard and Newman (1980) have also been 
determined. The determination of the ranges of the system 
parameters that yield agreement with the ID solution provides 
the operating conditions for research reactors that can be used 
to study complex chemical reaction mechanisms. 

For values of the mixed convection parameter Gr/Re3/2, 
less than approximately 3 the heat transfer is uniform over 
most of the disk and the solution of equations (16)-(19) yields 
results that are in good agreement with the \D values except 
for a small region close to the edge of the disk. For values of 
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the mixed convection parameter Gr/Re3/2 greater than ap
proximately 3 a recirculation region appears which leads to 
heat transfer rates that are larger than the ID value. Signifi
cant variations in the heat transfer also occur, especially for 
/•//•</> 0.5. 

The local heat transfer and the fluid flow have been obtain
ed over a Reynolds number range from 500 to 5000. For suffi
ciently large values of Gr/Re3/2, as the Reynolds number in
creases from 500 to 1000, a large recirculation zone appears 
and the heat transfer becomes nonuniform and significantly 
larger than the ID value. However, for Re greater than 1000, 
this recirculation zone becomes smaller and the heat transfer 
then becomes more uniform and decreases. 

For Gr/Re3/2 = 1.6 the local Nusselt number is only slightly 
dependent on r0/rd and is independent of L/rd. For the larger 
value of Gr/Re3/2 =5.6, the local Nusselt number becomes 
greatly dependent on both r0/rd and L/rd\ as r0/rd becomes 
smaller the local Nusselt number variation over the disk 
becomes larger, but decreasing L/rd results in a smaller varia
tion of the local Nusselt number. 

The effect of the inlet velocity on the local Nusselt number 
has also been obtained. For Gr/Re3/2 = 1.6, only the case of 
the inlet velocity given by the ID solution applied uniformly 
over the radius of the reactor (case I) yielded uniform heat 
transfer. For Gr/Re3/2 = 5.6, all three of the inlet velocity 
distributions exhibited significant variations for the local heat 
transfer. We also note that for Gr/Re3/2 = 5.6 the Nusselt 
number is significantly larger than the ID result. 
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Effect of Wall Conduction on 
Combined Free and Forced 
Laminar Convection in Horizontal 
Rectangular Channels 
This paper presents a numerical study of the effect of peripheral wall conduction on 
combined free and forced laminar convection in hydrodynamically and thermally 
fully developed flow in horizontal rectangular channels with uniform heat input ax-
ially, In addition to the Prandtl number, the Grashof number Gr+, and the aspect 
ratio y, a parameter Kp indicating the significance of wall conduction plays an im
portant role in heat transfer. A finite-difference method utilizing a power-law 
scheme is employed to solve the system of governing partial differential equations 
coupled with the equation for wall conduction. The numerical solution covers the 
parameters: Pr = 7.2 and 0.73, y = 0.5, 1, and 2, Kp = 10"4-104, and Gr+ = 
0-1.37x10s. The flow patterns and isotherms, the wall temperature distribution, 
the friction factor, and the Nusselt number are presented. The results show a signifi
cant effect of the conduction parameter Kp. 

Introduction 

Combined free and forced laminar convection in ducts is en
countered in a wide variety of engineering situations, in
cluding heat exchangers designed for viscous fluids in 
chemical processes, solar collectors, food industries, and 
biomedical applications. In the past decades, the combined 
convection in tubes and channels has been treated extensively. 
Analyses have been performed via finite-difference schemes in 
the fully developed region of horizontal tubes [1-3], inclined 
tubes [4, 5], and the entrance region with or without a large 
Prantdl number assumption [6-10]. Numerous experiments 
[11-14] were carried out for the approximate thermal 
boundary conditions of uniform heat flux or circumferentially 
uniform wall temperature. 

The boundary conditions posed for the analytical and ex
perimental studies in the fully developed flow area are: axially 
and circumferentially uniform heat flux [2, 11, 12], and 
uniform wall temperature at any axial position and linear axial 
wall temperature [1, 3-5, 13]. It is noted that the former cor
responds to the case of thin wall and small wall thermal con
ductivity, and the latter corresponds to the case of thick wall 
and large wall thermal conductivity. In the thermal entrance 
region, the boundary conditions are: axially and circumferen
tially uniform heat flux [6] and uniform wall temperature 
[7-10, 14], 

Patankar and his co-workers [15] studied the effect of cir
cumferentially nonuniform heating on laminar combined con
vection in a horizontal tube. The boundary conditions con
sidered are a uniform heat flux on the upper or lower half of 
the tube wall and an insulated condition on the other half. 
This circumferentially nonuniform boundary condition did 
not take into account the effect of wall conduction. Sparrow 
and Patankar [16] examined the relationships among bound
ary conditions and Nusselt numbers for thermally developed 
forced flow. Considering the axial wall conduction and the ex
ternal convective heat transfer coefficient of the tube, the ther
mal boundary conditions depend on the Biot number. The 
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boundary conditions of uniform heat flux and wall 
temperature are two limiting cases for the Biot number vary
ing from zero to infinity. Faghri and Sparrow [17] investigated 
the simultaneous wall and fluid axial conduction in laminar 
forced convection in which the upstream portion of the wall is 
externally insulated while the downstream portion of the wall 
is uniformly heated. 

The effect of heat conduction in the peripheral direction 
along the duct wall for purely forced convection has been 
discussed by Shah and London [18, 23]. Data including 
Nusselt numbers for uniform heat flux and wall temperature 
in rectangular ducts y = 1, 2, 4, 8 and other ducts were 
reported. Iqbal et al. [24] investigated the conjugate problem 
of laminar combined free and forced convection through ver
tical noncircular ducts. Morcos and Bergles [19] studied ex
perimentally the combined free and forced laminar convection 
in horizontal tubes with wall conduction as a correlation 
parameter. 

In many engineering applications, the boundary conditions 
in combined free and forced laminar convection cannot be 
considered either uniform wall temperature or uniform heat 
flux. To the best of the authors' knowledge, the effect of wall 
conduction on the mixed convection in channel flows has not 
been studied in the literature. This paper presents a theoretical 
investigation on the effect of finite wall conduction on the 
combined free and forced laminar convection in both 
hydrodynamically and thermally fully developed regions of 
horizontal channels. A finite-difference power-law scheme 
was employed to solve this problem. 

Theoretical Analysis 

Consider a steady laminar flow in the hydrodynamically 
and thermally fully developed region of a horizontal rec
tangular channel under an axially and peripherally uniform 
heat flux qw on the outer surface of the channel wall. The 
physical configuration is shown in Fig. 1. This situation can be 
realized as a steady laminar flow in a long rectangular channel 
with finite values of thermal conductivity and wall thickness 
heated electrically from the outer surface of the channel wall. 
The viscous dissipation and compressibility effects in the 
energy equation are neglected. The Boussinesq approximation 
[20] is valid. 
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Fig. 1 Physical configuration and grid points 

With the foregoing assumptions and introducing the dimen-
sionless variables 

x = X/De, y=Y/De, u=UDe/v, v=VDe/v 

w=WDe/(vC), 6=(T-Tr)kf/(qwDe) 

C=-(dP0/dZ)Dl/(AiLv), Gr+=gPqwD*/{v
2kf) (1) 

and the vorticity and stream function 

u = d\p/dy, v = — dxp/dx 

£ = dv/dx-du/dy (2) 

the governing equations expressing the conservation of mass, 
momentum, and energy become 

§ = - V2i/'= - (d2/dx2 + d2/dy2)<p 

u3£/3x+ vd£/dy= V2£ +Gr+ dd/dx 

udw/dx+vdw/dy= V2w + 4 

Pr(udd/dx+ vdd/dy) = V 2 0 - 4 w / w 

(3) 

(4) 

(5) 

(6) 

Equation (3), indicating the circulation of the fluid per unit 
area at each point, is derived directly from equation (2). Equa
tion (4) is the vorticity transport equation and it is obtained by 
cross differentiation of the X and F-direction momentum 
equations. It is seen from equation (4) that the vorticity is 
generated by the temperature gradient in the horizontal direc
tion. Equation (5) is the axial momentum equation. The value 
4 on the right-hand side of the equation (5) is the axial pressure 
gradient. The average w will decrease with the increase in the 
secondary flow intensity. Equation (6) is the energy equation. 
The term 4w/w in the right-hand side of the equation is the ax
ial advective term. The advective terms in the cross-sectional 
directions are on the left-hand side of equation (6). The effect 
of the secondary motion on the temperature distribution 
depends also on the Prandtl number. 

Equations (3)-(6) contain two independent parameters: 
Gr+ and Pr. For a fluid of fixed Pr, Gr+ alone governs the 
flow and heat transfer characteristics. Gr+ based on a 
prescribed heat flux is a modified Grashof number which can 
be easily related to a conventional parameter ReRa employed 
in 11] 

ReRa*=4GrH (7) 

where Re = WDe/v is the Reynolds number and Ra* = 
g(3(dT/dZ)D2/(va) is the Rayleigh number based on the axial 
temperature gradient. 

Nomenclature 
A = 

a = 

b = 

C = 

Q = 

C2 = 

De = 

f = 

Gr+ = 

8 = 
h = 

KP = 

k = 
k„ = 

kf = 

M = 

N = 

cross-sectional area 
width of rectangular 
channel 
height of a rectangular 
channel 
constant = -Cl D]/4v\x, 
= Re/w 
axial pressure gradient = 
dP0/dZ 
axial temperature gra
dient = dT/dZ 
equivalent hydraulic 
diameter = 4A/S 
friction factor = 
2fw/(ptV2) 
modified Grashof 
number = sDt/v2k •f 
gravitational acceleration 
average heat transfer 
coefficient 
wall heat conduction 
parameter = kwt/(kfDe) 
thermal conductivity 
thermal conductivity of 
channel wall 
thermal conductivity of 
fluid 
number of divisions in 
the X direction 
number of divisions in 
the Y direction 

Nu = Nusselt number = 
hDe/kf 

n = dimensionless inward-
drawn normal 

P0 = axial pressure which is a 
function of Z only 

Pr = Prandtl number = via 
qw = prescribed uniform heat 

flux on the outside sur
face of the channel wall 

Ra = Rayleigh number = Pr 
Gr + 

Ra* = Rayleigh number based 
on the axial temperature 
gradient = 
g&(dT/dZ)DA

e/va 
Re = Reynolds number = 

DeW/v 
S = circumference of cross 

section 
5 = dimensionless cir

cumference of cross 
section 

T = local temperature 
Tr = reference temperature, 

selected as the 
temperature at the upper 
corner of the wall 

Tw = wall temperature 
t = thickness of channel wall 

u,v,w = 
u, v, w = 

X,Y,Z = 
x, y, z = 

a = 
P = 

y = 

e = 

v- = 
V = 

p = 
T>v = 

+ = 

£ = 

Subscripts 

0 = 

i,j = 

velocity components in 
X, Y, and Z directions 
dimensionless velocity 
components in x, y, and 
z directions 
rectangular coordinates 
dimensionless rectangular 
coordinates 
thermal diffusivity 
coefficient of thermal 
expansion 
aspect ratio of a rec
tangular channel = a/b 
dimensionless 
temperature difference = 
(T-Tr)/(qwDe/kf) 
viscosity 
kinematic viscosity 
density 
wall shear stress 
dimensionless stream 
function 
vorticity 

condition for pure forced 
convection 
nodal point 
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Table 1 Nusselt number versus conduction ratio for pure forced convection 

Kp lO"4 10"3 10-2 10-' 
y 

1 3.098 3.098 3.138 3.324 
3.08* 

0.5, 2 3.035 3.039 3.084 3.337 
3.08* 

•From Table 4(b) of the book by Shah and London [23]. 

Because of symmetry, it is necessary to consider only half of 
the region. Consequently, the boundary conditions are 

d\(//dx = d\l//dy = w = 0 

on the channel walls 

d\^/dy = d2^/dx2 = dw/dx = dd/dx = 0 (8) 

along the center line, X = a/2 

In the present study, the values of the streamfunction on the 
channel walls and along the center line are taken as zero for 
simplicity. The derivation of thermal boundary condition 
along the channel wall can be found in Shan and London [23] 
and the dimensionless thermal boundary condition is 

l + (dd/dn)T+Kp(d
2e/ds2)r = 0 (9) 

where condition V denotes the inside surface of the channel 
wall, n is inward normal, s is the circumference of cross sec
tion, and Kp = kwt/(kfDe) is a parameter indicating the 
relative importance of heat conduction along the channel wall 
and in the fluid. Two limiting cases, Kp = 0 and 00, yield the 
boundary conditions of uniform heat flux and uniform wall 
temperature, respectively. It is reported in [18] that the values 
of the parameter Kp ranging from 0.1 to 10 are generally of in
terest to study the effect of wall conduction in a pipe flow. For 
instance, for a glass channel of t/De = 0(0.1) with water, 
gases and engine oils, or for a metal channel of t/De = 
0(0.01-0.1) with liquid metals, the effect of wall conduction is 
important. 

Method of Solution 

The details regarding the formulation of finite-difference 
equations for equations (2)-(6) and the related boundary con
ditions (8) and (9) are omitted here for simplicity. In order to 
have a convergent solution in a higher Gr+ region, the power-
law scheme of [21] was employed. The procedure for solving 
the finite-difference equations is: 

1 Assign values for Pr, Gr+ and Kp, and initial values for 
i/s £, w, and 6 in equations (3)-(6). 

2 New values of the streamfunction ip can be found by solv
ing equation (3) from the assigned value of £ at each node. 

3 The velocity components u and v are then computed by 
using equation (2). 

4 Values of the vorticity on the boundary are calculated 
from equation (3) and the associated boundary condition for 

5 With the assigned Gr + , the values of u and v from step 3 
and the boundary vorticity from step 4, equation (4) can be 
solved for £. 

6 Equations (5) and (6) are solved for vc and 6, respectively, 
with the velocity components u and v and the given Pr. 

7 The wall temperature can then be solved from equation 
(9) and temperatures at interior nodal points. 

8 Repeat steps 2 to 7 until the following convergence 
criterion is satisified: 

6 = £ ' (e<!." + " " el"J)l '6i7 " \/{MxN) < 8 X 10-5 (10) 
hi 
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1 10 102 103 104 

3.548 3.599 3.610 3.610 3.610 
3.50* 3.606* 3.608* 
3.864 4.093 4.121 4.123 4.123 
3.87* 4.12* 

9 Compute the friction factor and the Nusselt number. 

Results and Discussion 

Following the usual definitions, the expressions for the 
product of the friction factor and the Reynolds number/-Re 
and the Nusselt number Nu can be written based on the overall 
force and energy balances in the axial direction 

f-Re = (2tw/pW2)(WDe/p) = 2/w 

Nu = hDe/kf = w/w (Sw - 6) (11) 

where the dimensionless quantities w, dw, and w(Sw — d) are 
the cross-sectional average values which can be evaluated by 
using Simpson's rule. A computation experiment for the case 
of Pr = 7.2 and Kp~<x> was made to determine the mesh size 
required for sufficient accuracy. The differences for both the 
friction factor and the Nusselt numbers between mesh sizes 
14x28 and 16x32 are less than 0.07 percent for the case of 
Gr+ =0 and 7 = 1 and less than 0.13 percent for the case of 
Gr+ =2 .56x l0 4 and 7 = 1 . The mesh sizes 14x28 for 7=1 
and 0.5, and 20 x 20 for 7 = 2, are taken in the present study. 
A comparison between the results from the power-law scheme 
and the central-difference scheme for the case of 7 = 1, Kp — 00 
can be seen also in [22]. 

Table 1 shows the Nusselt numbers with the wall conduction 
parameter Kp ranging from 10 - 4 to 104 for forced convection 
in channels of aspect ratios 7 = 1 , 0.5, and 2. The relevant 
results given in Table 4(b) of the book by Shah and London 
[23] are also presented for comparison. It is seen that the 
Nusselt number increases with Kp for all values of 7. Further
more, for a small value of Kp, the Nusselt number approaches 
an asymptotic value of 3.098 at Kp < 10 - 3 , which shows only 
a 0.23 percent difference from the known value Nu = 3.091 
[18] for the case of 7 = 1 and peripherally uniform wall heat 
flux. Similarly, for a large value of Kp, the Nusselt number ap
proaches an asymptotic value of 3.610 at Kp > 102, which 
also shows a small difference of 0.55 percent from the known 
value of 3.63 [18] for the case of 7 = 1 and uniform wall 
temperature. For the cases of 7 = 0.5 and 2, and large A^, the 
value 4.123 at Kp > 103 also agrees with the value in the 
literature [1]. This observation confirms the accuracy and con
vergence properties of the present numerical solution. 

To illustrate the effects of peripheral wall heat conduction 
and buoyancy force on flow and heat transfer characteristics, 
the streamlines and isotherms are shown in Figs. 2(a), 2(b), 
and 2(c) for the cases of Kp = lO - 4 , 10" ' , and 104, respective
ly. Pr = 7.2 and Gr+ = 104 are chosen for this illustration. 
The values of the streamfunction are zero on the channel wall 
and the center symmetry line. Therefore it can be seen from 
equation (2) that the speed of secondary motion is propor
tional to the normal gradient of the streamfunction. It is seen 
from Figs. 2(a-c) that the secondry flow patterns are almost 
similar for Kp ranging from 10 "4 to 104. Thus the maximum 
absolute value of the streamfunction may be regarded as the 
intensity of secondary flow. The maximum absolute value of 
the streamfunction is 0.56 for Kp = 10-4 and is 0.761 for Kp 

= 104. A 36 percent increase in the maximum value of the 
streamfunction is observed from the case of constant heat flux 
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<K = 10~4) to the case of uniform wall temperature (Kp = 
104). This observation depicts the importance of the wall con
duction in the present study. 

It is also seen on the left-hand side of Figs. 2(a-c) that the 
isotherms change drastically with the wall conduction 
parameter Kp. In Fig. 2(a), Kp = 10~ \ the isotherms 8 
= -0 .05 , -0 .15 , and -0 .25 start at the left vertical wall. In 
Fig. 2(b), Kp = 10_ 1 , two isotherms 6 = -0 .05 and -0 .15 
start at the left vertical wall. For the case of Kp = 104 in Fig. 
2(c), none of the isotherms start at the side wall and a uniform 
temperature along the channel wall is observed. It is shown in 
equation (4) that the secondary flow is driven by the horizon
tal temperature gradient which increases with increase in the 
parameter Kp. This explains why the intensity of secondary 
flow is stronger in the case of uniform wall temperature than 
in the case of uniform heat flux. In the numerical computa
tion, the temperature at the upper corner is assigned zero as a 

(a) Kp^O 4 " 

0 0.5 1.0 

x 

(b) Kp=10~1 

Journal of Heat Transfer 

reference. The difference between the reference temperature 
and the minimum temperature is 0.286 in the case of Kp = 
104, but the difference is 0.537 for K„ = 10"4 . This is also a 
result of stronger secondary flow in the case of uniform wall 
temperature. 

For the varying wall conduction parameter Kp, the 
temperature distribution along the channel wall is of practical 
interest. Figures 3(a), 3(b), and 3(c) show the wall temperature 
distributions for the case of Pr = 7.2, and Gr+ = 0 , 103, and 
104, respectively, in a square channel. It is seen that in the case 
of purely forced convection Gr+ = 0 , the highest temperature 
appears at the corners, and the temperature distribution is 
symmetric with respect to the horizontal center line Y = b/2. 
As the conduction parameter Kp increases, the wall 
temperature distributions become more and more uniform. 
For the cases of Gr+ = 103 and 104, the secondary flow car
ries the fluid heated along the lower horizontal wall CD, ver
tical side wall BC, and then the upper horizontal wall AB. The 
fluid temperature becomes higher and higher. Therefore the 
location of the highest wall temperature appears at the upper 
corner B in the case of Gr+ = 103 or on the upper horizontal 
wall in the case of Gr+ = 104. Furthermore, it is seen that the 
difference between the highest and lowest wall temperature in
creases with increase in Gr+ for the same value of Kp. 

To confirm the present numerical solution, Fig. 4 shows the 
comparison of Nusselt numbers for the limiting cases of small 
and large conduction parameter Kp. The dashed line is the 
result presented in Cheng and Hwang [1] for the case of 
uniform wall temperature at small and intermediate values of 
Gr + . The dash-dot line is the result presented in Chou and 
Hwang [22] for the case of uniform wall temperature at larger 
values of Gr + . The present solution for the case of y = 1 and 
Kp = 10 agrees closely with the results in [1, 22]. The data in
dicated by solid circles are obtained from [6] with a large 
Prandtl number assumption for mixed laminar convection in 
the thermal entrance region of horizontal rectangular channels 
with uniform heat flux. These data agree reasonably well with 
the present solution for the case of small values of Kp. 

It may be interesting to know under what wall conduction 
parameter the thermal boundary condition may be considered 
as circumferentially uniform heat flux or circumferentially 

0 0.5 1.0 
x 

(c) Kp=104 

Fig. 2 Streamlines and isotherms for the case of Gr + =10 4 , Pr = 7.2, 
and y = 1 
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(a) Gr*=0.0 

(b) Gr*=103 

1 1 1 

(c) Gr*=10 

Fig. 3 Temperature distribution along the wall for Pr = 7.2 and 7 = 1 

uniform wall temperature for the mixed convection in a 
horizontal square channel. It is seen in Fig. 4 that the dif
ferences between the values of Nu with Kp = 0 and 0.01, for 
Gr+ = 0-2 x 104, are less than 2.1 percent. Therefore the 
thermal boundary condition with Kp < 0.01 may be con
sidered as circumferentially uniform heat flux. Similarly the 
curves of Kp = 10 and oo in Fig. 4 lie close together. Therefore 
the thermal boundary condition with Kp > 10 may be con
sidered as circumferentially uniform wall temperature. 

Tables 2-4 show the numerical results of Nu and/Re versus 
wall conduction parameter Kp and buoyancy parameter Gr + 

for the cases of Pr = 7.2 and 0.73, with 7 = 1,0.5, and 2. It is 
seen that due to the reason explained in Fig. 2, the value of/Re 
for a higher value of Kp is greater than that for a lower value 

1—1 1 11 n i | 1—1 1 1 1 1 i i | 

CHENG AND HWANG [1] 

102 103 104 105 

+ 

Gr 

Fig. A Nu versus Gr + 

of Kp for the same value of G r + . Furthermore, due to the 
Prandtl number effect, only a few percent increase in the value 
of/Re is observed for Pr = 7.2 and the value of/Re is lower 
than that for Pr = 0.73 for the same parameters 7, Kp, and 
Gr + . 

Table 2 shows that the Nusselt number increases with in
crease in Gr+ . The values of Nu increase 64.7 and 52.8 percent 
for Kp = 0 and 10, respectively, when Gr+ is changed from 0 
to 104. This observation indicates that the enhancement of 
heat transfer rate is more effective in the case of lower Kp. As 
shown in Table 3, the difference between the values of Nu for 
Kp = 0 and 104 in the case of 7 = 0.5 is larger than those in 
the cases of 7 = 1 and 2. Table 4 summarizes the numerical 
results for the case of Pr = 0.73 with 7 = 1, 0.5, and 2. It is 
seen that the value of Nu is lower in the case of Pr = 0.73 than 
that in the case of Pr = 7.2 for the same values of Pr»Gr+ and 
Kp. 

Concluding Remarks 

1 The results of the present numerical study have shown 
that the heat transfer characteristic of combined free and 
forced laminar convection in horizontal rectangular channels 
is affected significantly by the peripheral wall heat conduction 
and the buoyancy-induced secondary flow. 

2 A parameter Kp = kwt/(kfDe) is introduced to indicate 
the importance of heat conduction along the channel wall. The 
Nusselt numbers of forced laminar convection are shown in 
Table 1 for channels of aspect ratio 7 = 1 , 0.5, and 2. By 
checking the values of Nu for various Kp with the two limiting 
Nusselt numbers, the cases of Kp < 10~2 and Kp > 10 can be 
considered, respectively, as the thermal boundary conditions 
of circumferentially uniform heat flux and circumferentially 
uniform temperature for the case of Pr = 7.2. 
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Table 2 Numerical results for aspect ratio 7 = 1 and Pr = 7.2 

*P 

Gr + 

0 
3X102 

103 

3 x l 0 3 

10" 
2X10" 
3X10" 

0 

Nu 

3.098 
— 

3.526 
4.191 
5.103 
5.676 

-

/Re 

14.24 
— 

14.26 
14.29 
14.36 
14.42 

-

Nu 

3.138 
3.203 
3.549 
4.229 
5.183 
5.796 

-

0.01 

JRe 

14.24 
14.25 
14.26 
14.29 
14.37 
14.44 

-

Nu 

3.324 
3.384 
3.706 
4.412 
5.440 

-
6.536 

0.1 

/Re 

14.24 
14.25 
14.26 
14.30 
14.37 

-
14.57 

1 

Nu 

3.548 
3.593 
3.862 
4.527 
5.569 
6.274 

-

/Re 

14.24 
14.25 
14.26 
14.31 
14.40 
14.57 

-

Nu 

3.599 
— 

3.878 
4.498 
5.499 

-
6.662 

10 

/Re 

14.24 
-

14.26 
14.33 
14.48 

-
14.73 

10" 

Nu 

3.610 
-

3.894 
4.500 
5.498 

-
6.652 

/Re 

14.24 
_ 

14.40 
14.34 
14.46 

_ 
14.72 

KP 

Gr + 

Table 3 Numerical results for aspect ratios 7 = 

10"4 0.1 

Nu /Re Nu /Re 

= 0.5 and 2, and Pr = 7.2 

1 

Nu /Re Nu 

10" 

/Re 

= 0.5 

0 
3 x l 0 2 

103 

3 x l 0 3 

10" 
3x10" 

0 
3 x l 0 2 

103 

3 x l 0 3 

10" 
3 x l 0 4 

3.035 
3.052 
3.172 
3.813 
4.859 

-

3.035 
3.197 
3.681 
4.376 
5.333 

-

15.56 
15.56 
15.77 
15.58 
15.64 

-

15.56 
15.57 
15.57 
15.59 
15.63 

-

3.337 
3.353 
3.469 
4.098 
5.359 

-

3.337 
3.446 
3.869 
4.572 
5.558 

-

15.56 
15.56 
15.56 
15.58 
15.67 

-

15.56 
15.57 
15.57 
15.59 
15.64 

-

3.864 
3.879 
3.973 
4.459 
5.667 
7.051 

3.864 
-

4.117 
4.662 
5.569 
6.621 

15.56 
15.56 
15.56 
15.59 
15.69 
15.93 

15.56 
-

15.57 
15.59 
15.65 
15.77 

4.124 
4.142 
4.221 
4.643 
5.713 
7.078 

4.124 
~ 

4.248 
4.617 
5.385 
6.342 

15.56 
15.56 
15.56 
15.59 
15.70 
16.00 

15.56 
-

15.57 
15.57 
15.67 
15.81 

Table 4 Numerical results for 7 = 1, 0.5, and 2, and Pr = 0.73 

7 

KP 

Gr + 

0 
1.370X103 

6.849 X103 

1.370x10" 
4.110x10" 
6.849x10" 
8.219x10" 
1.370xl05 

0 

Nu 

3.098 
3.136 
3.384 
3.665 
4.262 
4.532 

-
-

/Re 

14.24 
14.26 
14.75 
15.31 
16.50 
17.13 

-
-

I 

Nu 

3.610 
3.636 
3.841 
4.156 
4.923 

— 
5.504 
5.948 

10" 

/Re 

14.24 
14.29 
14.84 
15.60 
17.35 

-
18.62 
19.62 

0.5 

0 

Nu 

3.035 
3.117 
3.166 
3.367 
3.954 
4.281 

-
-

/Re 

15.56 
15.57 
15.68 
15.96 
16.91 
17.49 

-
-

10" 

Nu 

4.123 
4.139 
4.208 
4.380 
5.084 

_ 
5.746 
6.294 

/Re 

15.56 
15.59 
15.75 
16.16 
17.79 

-
19.32 
20.60 

0 

Nu 

3.035 
3.117 
3.562 
3.940 
4.595 

-
-
-

/Re 

15.56 
15.57 
15.97 
16.33 
17.10 

-
-
-

1 

Nu 

4.123 
4.151 
4.250 
4.445 
4.965 

-
5.416 
5.790 

10" 

/Re 

15.56 
15.57 
15.77 
16.18 
17.27 

-
18.24 
19.09 

3 The intensity of secondary flow increases with increase in 

Kp when the value of the modified Grashof number is fixed. 

Therefore, the values of /Re with higher values of Kp are 

higher than those of lower values of K„ with the same value of 

Gr + . 

4 The enhancement of heat transfer rate due to Gr+ is more 

effective in the case of lower Kp for 7 = 1 and the trend is 

more pronounced in the case of 7 = 2. For Pr = 0.73 the 

value of Nu is lower than that for Pr = 7.2 with the same 

value of Pr«Gr+ andKp. 
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Enhanced Heat Transfer Due to 
Secondary Flows in Mixed 
Turbulent Convection 
An experimental study of the fluid flow and heat transfer phenomena associated 
with opposing mixed turbulent convection in vertical ducts has been conducted. The 
duct considered had vertical and horizontal aspect ratios of 24.4 and 9.7, respective
ly. The working fluid was Freon-113, providing a Prandtl number of approximately 
6.5. The results showed that a number of flow bifurcations occurred as GrDh/Reob 

was increased. The first bifurcation observed was from parallel turbulent mean flow 
to a large single flow cell in the x-z plane. This occurred in the neighborhood of 
GrDh/Re2

m=2. Further bifurcations to multiple cells and eventually pure large-scale 
chaos were also observed. A correlation for the enhanced heat transfer was found to 
be NuDh/NuDK0 = 1.0+0.9[ln(Grm/Re2

Dh + 1)] 1.39 where Nu 
Petukhov-Virillov correlation for pure forced turbulent convection. 

Dh,0 the 

Introduction 

Combined turbulent convection refers to fluid flow in
fluenced by both buoyancy forces and dynamic pressure 
forces. The buoyancy forces can act in either the same direc
tion (aiding) or opposite direction (opposing) as the dynamic 
pressure forces. In heated vertical ducts with equal wall 
temperatures or equal wall heat fluxes symmetry can be im
posed and the duct half width becomes a characteristic dimen
sion. The density gradient across the duct half width, due to 
the difference in the wall and free-stream temperatures, drives 
the buoyant layer upward near the hot wall. This layer en
trains fluid from the downward flowing free stream. The net 
mass flow through the duct, which remains constant, deter
mines the magnitude of the forced flow. The main concern in 
these flow systems lies in how these opposing forces influence 
flow structure and heat transfer. 

Experimental studies of mixed turbulent flows conducted 
over the past fifty years have dealt with either air or water 
flowing in horizontal or vertical ducts and tubes. Only a few 
of these studies are discussed although a fairly complete list is 
given in the references section of this paper. 

Nakajima et al. (1980) examined turbulent mixed convec
tion between parallel vertical plates for air both experimental
ly and theoretically. Both aiding and opposing buoyancy flows 
were treated for fully developed flow with Gr/Re2 < 2 x 10"2. 
Results showed that the Nusselt number increased with in
creasing Gr/Re2 (based on duct width) for forced flow with an 
opposing buoyancy force, and decreased with increasing 
Gr/Re2 for forced flow with an aiding buoyancy force. This 
phenomenon was attributed to an increasing velocity fluctua
tion (eddy size) in opposing flow and vice versa for aiding 
flow. 

Eckert and Diaguila (1954) conducted experiments on com
bined convection for air flowing through short tubes. Their 
heat transfer results showed mixed heat transfer coefficients 
up to twice as high as those for either purely free or forced 
convection. They attributed this increase to an increased tur
bulent diffusion caused by the opposing buoyancy force near 
the wall. Large-scale turbulence was also observed with hot
wire anemometers. 

Brown and Gauvin (1965, 1966) studied the rate of heat 
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transfer to air flowing downward at low velocities through a 
heated tube. They noted that the entrance region was about 
seven tube diameters regardless of the magnitude of the net 
mass flow rate. A thorough explanation of the behavior of the 
heat transfer in the entrance region was found in Brown and 
Gauvin (1966). They attributed the observed initial increase in 
heat transfer to an increase in the turbulent transport due to 
the opposing buoyancy force. They verified this by plotting 
the rms radial temperature fluctuation for various axial loca
tions. They also noted that the observed decrease in heat 
transfer for x/D>4.5 was due to a reduction in the wall shear 
stress, also caused by buoyancy. Brown and Gauvin also sug
gested that the rate of heat transport in opposing convection 
was controlled by free convection alone. 

Jackson and Fewster (1976) studied turbulent mixed convec
tion for water flowing in vertical tubes both experimentally 
and theoretically. A similar theoretical approach for the same 
geometry has been presented by Axcell and Hall (1976) for air 
and Jackson (1983) for liquid metals. Jackson's method com
bined the buoyancy force with the shear stress by evaluating 
the change in shear stress across the buoyant layer given by the 
integral 

Aa5= j o (pb-p)gdy 

Adding the change in shear stress across the buoyant layer to 
the shear stress at the wall yielded a modified shear stress 
which was used to modify the forced convection heat transfer 
correlation (NuDAi0) of Petukhov and Kirillov (1958). By 
proper parameter adjustment, the correlation was made to fit 
data over a wide mixed flow parameter range. The correlation 
was found to be 

Nu, 

Nur 

- = (1 +4500Gri5/,Re5A
21/8Pr-1/2)0 

where 

R e ^ P r -

Numo = -

(1) 

(2) 

12.7 M - ) (P r 2 / 3 - l )+1 .07 

Cf = 
1 

(3.64 1og10ReM-3.28)2 

G r M = 
(Pb~p)gD\ 

Pb"1 
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EXPERIMENTAL APPARATUS 

Apparatus Feed Line 

The above relationship agrees very well with data for water 
flowing in vertical pipes over the range 10 "5 <Grzw,/Re|,1/8 

Pr 1 / 2<0.2. The correlation moderately overpredicts the data 
of Watzinger and Johnson (1939) and Herbert and Sterns 
(1972). 

All of the literature discussed to this point has dealt with 
either duct or pipe geometries of various vertical aspect ratios 
covering a fairly wide range of flow parameters. Only Eckert 
and Diaguila (1954) have briefly mentioned observations of 
large-scale turbulence via hot-wire anemometry. They ap
parently did not observe any flow bifurcations as the buoyan
cy force was increased in opposing mixed flow. In this work, 
an experimental study has been undertaken to gain an 
understanding of the fluid flow structure and heat transfer 
phenomena associated with opposing mixed turbulent convec
tion in a vertical duct which has vertical and horizontal aspect 
ratios of 24.4 and 9.7, respectively. A description of the flow 
structure is provided through visual observations and a 
Nusselt number correlation is obtained reflecting the enhanced 
heat transfer over that for purely forced flows. 

Experimental System 

The experimental system used in this study is shown in Fig. 
1. The system can be divided into two parts: the fluid flow 
loop and the experimental apparatus. 

The fluid flow loop supplied liquid Freon-113 to the ex
perimental apparatus at a set inlet temperature and volumetric 
flow rate. Freon-113 was used as the working fluid due to its 
favorable buoyancy properties. The Freon was stored in a 
1.7-m3 tank and its temperature was thermostatically con
trolled (±2.8°C) by a 7-ton refrigeration system. Cold fluid 
was pumped out of the tank by a 3.73-kW Weil centrifugal 
pump. The volumetric flow rate to the apparatus was con
trolled by adjusting the globe valves in the tank recycle line 
and the apparatus feed line. The total inlet flow rate to the ap
paratus was measured with a 5.1-cm Foxboro turbine flow 
meter. 

The fluid entered the apparatus at the flow conditioning sec
tion where perforated plates, wire screens, and gradual flow 
contraction flattened the velocity profile and laminarized the 
flow. Thus laminar plug flow at a given temperature and 
volumetric flow entered the buoyant layer bleed section of the 
apparatus. Porous plates separated the bleed chambers from 
the forced flow in the duct. The fluid then entered the test sec
tion of dimensions 108 cm x 2.22 cm x 43.2 cm (height (H) 
x half-width (£)) x length (L)), These dimensions gave the 
test section a vertical aspect ratio (H/2D) of 24.4 and a 
horizontal aspect ratio (L/2D) of 9.7. Two 0.48-cm-thick 
polished aluminum plates served as the heated surfaces and 
1.91-cm-thick plexiglass sidewalls allowed flow visualization. 

3.73 kw 
Pump Return to v 

Tank 

Fig. 1 Experimental system 

Fifteen electrofilm strip heaters were glued to the outer surface 
of each aluminum plate to provide a constant wall heat flux. 
The amount of power supplied to the heaters was controlled 
with a 50-kW variac. Fiberglassed polyurethane slabs (5.1 cm 
thick) served as insulation and structural support for the 
plates. Wall thermocouples were glued with thermally con
ducting cement to the outside of the aluminum plates. The 
wall thermocouples were centered horizontally on each plate 
and the corresponding thermocouple probes were mounted 
along the duct vertical centerline. The wall/probe pairs were 
placed at seven equidistant locations along the duct vertical 
height. Output signals from the thermocouples were ap
propriately conditioned and transferred to a DEC PDP-11 
minicomputer for data storage and reduction. Each recorded 
data point represented an average of five instantaneous values 
taken at 10-s time intervals. A 3.8-cm Flowmetrics turbine 
flow meter at the duct outlet allowed measurement of the net 
volumetric flow rate through the duct. The flow was then 
returned to the tank for cooling and flow loop closure. The 
system p rov ided a mixed p a r a m e t e r range of 
0 .9<Gr M /Re^ ,<30 . 

Heat transfer data were taken at each thermocouple station 
over the entire mixed parameter range after the system came to 
steady state. Initially, extra wall thermocouples were placed at 
various positions along the duct horizontal length to insure a 
constant heat flux boundary condition. The deviation from 
the wall thermocouple centerline temperature was found to be 
less than 3 percent for G r ^ / R e ^ <2.3; no horizontal 
temperature data were taken above this point. A fully 
developed flow condition (AT approximately constant) was 
observed for x/D > 5 at all values of GxDh /Re%,h. The flow was 
observed by noticing shadows in the fluid caused by changes in 
the refractive index with respect to density. The average 
Nusselt number was calculated by averaging the values of AT 
obtained at the five inner thermocouple stations. 

The systematic error in the Nusselt number was estimated 
based on instrumentation accuracy and conduction losses. 

Vf 
D 

Dh 

g 
GTDh 

H 
L 

N U M 

n o m e n c l a t u r e 

= coefficient of friction 
= duct half-width 
= hydraulic diameter AD 
= gravitational constant 
= Grashof number = 

{g{$(Tw-Te)Dl/v2) 
= duct height 
= duct horizontal lerigth 
= Nusselt number = 

q„Dh/k(Tw-Te) 

Pr = Prandtl number = via 
q = heat flux 

Re/,;, = Reynolds number = uaveDh/v 
T = temperature 
V = volumetric flow rate 
a = thermal diffusivity 
/3 = thermal expansion 

coefficient 
5 = buoyant layer thickness 
v = kinematic viscosity 

p = density 
a = shear stress 

Subscripts 
ave = average 

b = bulk 
Dh = hydraulic diameter 

e = free stream 
w = wall 
0 = value for pure forced 

convection 
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Fig. 2 Heat transfer enhancement due to buoyancy effects in forced 
turbulent convection in vertical ducts 

Conduction losses through the plexiglass sidewalls, 
polyurethane insulation, and aluminum plates were less than 5 
percent of qw. Conduction in the thermocouple probes yielded 
a maximum error of 2 percent in AT. Thermocouple accuracy 
in an isothermal environment gave a 1 percent error in AT. 
The error in reading the power meter was approximately 2 per
cent of qw. The absolute systematic error in the Nusselt 
number based on these estimates was found to be less than 11 
percent. 

The random error was evaluated based on observed varia
tions in the wall heat flux and AT. Inlet fluid temperature 
variations (±0.56°C max over a 40-s sampling interval) due to 
the dynamics of the refrigeration system yielded a calculated 
maximum error of 8 percent in qw. Individual strip heater 
variation in power due to fluctuations in the power supply 
were less than 4 percent of qw. The maximum random error in 
the Nusselt number based on these estimates was found to be 
12 percent. 

Results and Discussion 

Figure 2 depicts the experimental values of Nuw/Nu f l J 0 as 
a function of GxDh/Ke2

Dh, where NuDM is the Petukhov-
Virillov correlation given by equation (2). The curve in Fig. 2 
represents a least-squares fit of the data. The resulting correla
tion is given as 

NuM i 0 L VRef,,, / J 
with a standard error of 0.14. Note the enhancement in heat 
transfer over that for pure forced convection with increasing 
Gr0/l/Re|,A, a common phenomenon associated with opposing 
mixed convection. 

At values of GxDh/'R.t1
Dh less than approximately 2, two-

dimensional parallel mean flow was observed and the en
hanced heat transfer was caused by the increased shearing ef
fect due to the upward flowing buoyant layer near the wall. 
The added shearing intensified fluid mixing which penetrated 
deeper into the buoyant layer as the wall heat flux was in
creased for a constant volumetric flow rate (increasing 
GrDA/Re|,A). The penetration continued as the heat flux was 
increased until the convection appeared as small clumps of 
fluid transported from the wall to the free stream. 

The developing flow region near the upper heated edge was 
also on the order of one hydraulic diameter. The free stream 
seemed to peel off the upward flowing buoyant layer forcing 
the early flow development. Once developed, the buoyant 

>• Increasing q w with V constant 

Fig. 3 Secondary flows and bifurcation phenomena observed in mixed 
turbulent convection for vertical ducts 

layer thickness remained approximately constant throughout 
the duct height. 

At very high flow rates, upward flowing buoyant spots 
developed on the wall and were sheared off the wall into the 
free stream. The buoyant layer thickness also tended to in
crease as the volumetric flow rate was decreased. The interface 
between the buoyant layer and the free stream was wavy with 
vortices shedding off the layer into the free stream. The 
amplitude of the interfacial waves also decreased with decreas
ing volumetric flow rate. 

Eventually, a bifurcation to a large secondary flow cell (cir
culation period > 1 s) occurred in the neighborhood of 
Gr^/ReJ,,, = 2. This flow cell, and other observed bifurcation 
phenomena, are illustrated in Fig. 3. A notable characteristic 
of this single cell was that it definitely had a preferred flow 
direction (counterclockwise). The cell often attempted to 
reverse direction by slowing down considerably; however, no 
definite cell reversal was observed after the apparatus ap
proached an average steady-state condition. The preferred 
flow direction was probably caused by unavoidable 
nonuniformities in the test section. It should also be noted that 
during transient heating the clockwise flow direction was 
predominant. 

Bifurcations to multiple cells and eventually what appeared 
to be pure large-scale chaos were also observed as the heat flux 
was increased. The cells displayed chaotic behavior in flow 
direction with flow reversal periods that varied from seconds 
to minutes. No preference in flow direction was detected in 
this case. The pure chaotic state occurred at the largest values 
of Gr^/Re^,. These flows were characterized by tumultuous 
swirling motions where huge quantities of fluid were con
verted up and then down the duct. This generated tremendous 
fluid mixing and thus higher heat transport. 

Conclusions 
An experimental study has been undertaken to gain an 

understanding of the fluid flow structure and heat transfer 
phenomena associated with mixed turbulent convection in ver
tical ducts. The duct under investigation had vertical and 
horizontal aspect ratios of 24.4 and 9.7, respectively. The 
working fluid was Freon-113, providing a Prandtl number of 
approximately 6.5. The results showed that a number of flow 
bifurcations occurred as GrDh/Kt2

Dh was increased. The first 
bifurcation observed was from parallel turbulent mean flow to 
a large single flow cell in the x-z plane. This occurred in the 
neighborhood of GrBA/Re|„, =2. Further bifurcations to 
multiple cells and eventually pure large-scale chaos were also 
observed. A correlation for the enhanced heat transfer was 
found to be 

J ^ = 1 . 0 + 0.9L(^+l)lL39 

NuWi0 L V Re^ 11 
where NuMi0 is the Petukhov-Virillov correlation for pure 
forced turbulent convection. 
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Mixed Convection in Ducts With 
Asymmetric Wall Heat Fluxes 
Results are presented of a numerical study dealing with combined free and forced 
laminar convection in a parallel plate vertical channel with asymmetric wall heating 
at uniform heat fluxes (UHF). The forced flow at the inlet is assumed to be spatially 
uniform and directed vertically upward. Quantitative information is provided per
taining to the effects of buoyancy and asymmetric heating on the hydrodynamic and 
thermal parameters. For values of Gr/Re up to 500 no flow reversal is predicted, in 
contrast to the case of uniform wall temperatures (UWT) recently reported. Other 
fundamental differences between UHF and UWT also are indicated. 

Introduction 

Recent technological implications have given rise to in
creased interest in mixed convection problems in vertical chan
nels. The physical situations involved both buoyancy-aided 
and opposed cases, for laminar and turbulent flows. Conse
quently, the numbers of technical papers and technical ses
sions at professional society meetings that deal with combined 
free and forced convection are on the rise. 

A review of the open literature, however, reveals that there 
has been only scant attention paid to mixed convection in ver
tical channels. For fully developed laminar flow, theoretical 
solutions have been obtained by Rao and Morris [1] for both 
buoyancy-assisted and opposed mixed convection under the 
condition that one wall is heated at uniform heat flux (UHF) 
and the other insulated. For assisted flow, heat transfer was 
found to increase with the Rayleigh number; for opposed flow 
the converse holds true. For hydrodynamically and thermally 
developing flow, Yao [2] presented an analysis of combined 
convection with symmetric uniform wall temperature (UWT) 
or UHF conditions. His study reveals the flow structure in the 
developing region, and leads to the conjecture that reversed 
flow of a periodic nature could be present in fully developed 
flow. For a vertical parallel plate channel with one wall at 
UHF and the other wall insulated, Malik and Pletcher [3] ob
tained theoretical results for the laminar buoyancy assisted 
flow of ethylene glycol, including variable property effects. 
The theoretical study shows that, with the onset of flow rever
sal adjacent to the cool wall, an increase in the heat transfer 
occurs. 

In a recent paper [4], the present authors discussed the 
results of a study of laminar mixed convection in a parallel 
plate vertical channel in which the two walls are maintained at 
uniform but not necessarily equal temperatures (UWT). 
Buoyancy forces have been shown to introduce a distortion in
to the velocity profile while asymmetric heating is seen to 
cause a skewness that can be quite severe. For symmetric 
heating the distortions eventually disappear and the profile 
evolves into a parabolic shape at large distances from the 
channel entrance. For asymmetric heating the distortions, 
skewness, and even flow reversal are present in fully developed 
flow. Quantitative results on the Nusselt number and bulk 
temperature indicate a significant influence due to buoyancy 
and asymmetric heating. Finally, the hydrodynamic develop
ment length is found to increase dramatically with buoyancy, 
which has the opposite influence on the thermal development 
length. 

The purpose of the present paper is to report the results of a 

Table 1 Mesh sizes employed 
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HEAT TRANSFER. Manuscript received by the Heat Transfer Division June 10, 
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AX AY 

0 < X < 0.0002 
0.0002 <X< 0.0006 
0.0006<X< 0.001 
o.ooi <^r< o.oi 

0.01 <X< oo 

0.0001 
0.0002 
0.00025 
0.0005 
0.001 

0.0125 
0.0125 
0.025 
0.02 
0.05 

study in which the channel walls are maintained at uniform 
but not necessarily equal heat fluxes. As in [4], the results are 
obtained by a numerical solution of the describing equations 
using an implicit finite difference technique. The overall in
vestigation comprised a thesis [5] in which the objective is to 
secure a quantitative understanding of mixed convection in a 
configuration having current engineering applications, such as 
solar energy and electronic system cooling. In these applica
tions, the wall heating is more nearly uniform in heat fluxes 
than in temperatures. A fundamental difference between the 
two heating conditions is that in UWT, the fluid temperatures 
approach constant values at large axial distances, whereas the 
thermal field continues to change in UHF. This phenomenon 
could lead to a major alteration of the structure of flow, in
cluding the occurrence of flow separation. 

Theoretical Approaches 

Consider the situation in which a parallel plate duct is 
oriented along the gravitational direction. A forced flow ap
proaches the bottom of the duct with a flat upward (positive X 
direction) velocity profile and a uniform temperature. The 
right wall is heated uniformly by external means at a rate q2 

and the left wall heat flux is qx. The ratio of the heat fluxes is 
rH, where 0 <rH< 1, which characterizes the degree of asym
metric heating. The flow is considered laminar throughout 
and fluid properties are assumed constant except for the 
buoyancy term in the momentum equation. It is clear that the 
situation under consideration constitutes what is sometimes 
known as "aiding" flow. The dimensionless equations and the 
boundary conditions that describe the physical situation are 

Continuity 

X momentum 
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y momentum 

Energy 

dP 
-=o 

u-
de 
dX 

•+v-
de 1 d2e 
dY Pr dY2 

At A X ) , 0 < F < 1 : C/=l, K=0, 0 = 0, P = 0 

AtA'>0 , K=0: 

A t A > 0 , 7 = 1 : 

[/=0, K=0, 30/dY=-rH 

U=0, V=0, 50 /37=1 

(3) 

(4) 

(5) 

Note that in addition to rH, the nondimensional temperature 
and the Grashof number are defined differently than for 
UWT; otherwise, all parameters have the same definitions as 
in [4]. 

The describing equations are solved in conjunction with the 
above boundary conditions by means of a finite difference 
method employing an implicit differencing scheme. The 
method has been described in [6]; suffice it to say here that this 
approach transforms the differential equations into a set of 
algebraic equations, and the flow region is overlaid with a grid 
system that is spatially uniform in the transverse direction but 
the spacing is made smaller near the channel entrance where 
sharp changes in the variables are expected. Similarly, smaller 
axial nodal sizes are employed near the channel entrance. The 
numerical procedure involves a marching scheme in which the 
conditions specified at the channel entrance are used to 
calculate the values of the variables for the first row of nodes 
inside the channel, and these are in turn used to calculate late 
values for the next row. The process is repeated until a 
prescribed value of X is reached, or until the velocity and 
temperature profiles cease .to change appreciably from one 
row to the next. Typical node spacings employed in this in
vestigation are indicated in Table 1. As noted in [4, 5], the 
present approach has been subjected to a process of validation 
by comparison with existing results for simplified cases, giving 
excellent agreement and hence confidence in the validity of the 
new results to be presented herein. 

The above describes the approach utilized to obtain the 
solutions for the developing flow which, as will be discussed, 
approaches fully developed flow (FDF) at large values of X. 
Results for FDF may be obtained directly from an appropriate 
simplification of the describing equations, starting from the 
fundamental condition that in FDF, V=0. The analysis is 
reported in [7]. 
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Fig. 1 Axial variation of the centerline velocity (rH = 1.0) 

Discussion of Results 

Hydrodynamic Parameters. In the UWT case, the effect 
of buoyancy is most noticeable on the velocity profile. The 
profile in that case is highly distorted during flow develop
ment. The distortion diminishes in FDF when rT< 1, and com
pletely disappears when rT = 1 (symmetric wall temperatures) 
resulting for all Gr/Re values in a parabolic profile. In the 
present UHF case, a similar situation exists for rH < 1, but 
when symmetric heating occurs (rH = 1), the velocity becomes 
parabolic only for Gr/Re = 0; for Gr/Re > 0, the FDF pro
file is found to depend on the value of the latter parameter. 
Figure 1 illustrates this point using the axial variation of the 
centerline temperature. For symmetric heating (rH=\), the 
centerline velocity develops into the FDF of Uc = 1.5 when 
Gr/Re = 0, and full development is accomplished at a very 
small value of the dimensionless distance AT when compared to 
the UWT case. When Gr/Re > 0, the development length, as 
indicated by the region where Uc is changing, is increased and 
this trend is consistent with the UWT case; however, unlike 
UWT, the centerline velocity fails to develop into the universal 
value of 1.5, but instead assumes values progressively smaller 
as Gr/Re increases. Thus, a major difference between UWT 
and UHF (when rT = rH = 1) lies in FDF, where in UWT an 
identical profile is assumed by the fluid at all values of Gr/Re, 
whereas in UHF the profile suffers a center depression or con
cavity that becomes increasingly pronounced as Gr/Re 
increases. 

For rH = 0.5, the present results show that the profile at a 

Nomenclature 

8 
Gr 

k 
P' 
P" 

P 
Pr 

q 

duct spacing 
specific heat at constant 
pressure 
acceleration due to gravity 
Grashof number; 
g&q2b*/v

2k (UHF) or g/3(T2 -
T0) b3/v2 (UWT) 
thermal conductivity 
static pressure 
hydrostatic pressure 
(p' -p")/pu\ 
Prandtl number = \x.cp /k 
heat transfer per unit surface 
area per unit time 

u 

Re 
T 
v 

U = 

V = 

x,y = 

X = 

Reynolds number = uab/v 
temperature 
axial or streamwise velocity 
and transverse velocity, 
respectively 
dimensionless axial 
velocity = u/u0 

dimensionless transverse 
velocity = vb/v 
axial and transverse coor
dinates, respectively (x = 0 at 
duct entrance; ; = 0 on cool 
wall) 
dimensionless axial 
coordinate = x/{bRs) 

Y = dimensionless transverse 
coordinate =y/b 

(3 = thermal expansion coefficient 
ix = dynamic viscosity = pv 
v = kinematic viscosity 
6 = dimensionless temperature 

= (T-T0)/(q2b/k) 

Subscripts 
b 
c 
w 
0 
1 
2 

= bulk condition 
= centerline value 
= condition at wall 
= condition at entrance of duct 
= pertaining to the cool wall 
= pertaining to the hot wall 

948/Vol. 109, NOVEMBER 1987 Transactions of the ASME 

Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1.0 

8 1.0 

Fig. 2 Variation of the velocity profile with the buoyancy parameter 
<rH=0.5;X = 0.1) 

.5 

UHF 
r H =1 .0 

^ = 2 5 0 
Re 

_ 

I 

,' X = 0.2 

» ^ - - - X = 0.1 

^ 1 " ' 1 — 1 

.4 

Y 
Fig. 3 Development of the temperature profile (rH = 1.0; Gr/Re = 250) 

relatively large value of X is not affected by the asymmetric 
heating when Gr/Re = 0, and a parabolic profile is attained 
by the fluid. This is shown in Fig. 2. The same figure also 
shows that for Gr/Re > 0, the fluid flow is more and more 
channeled toward the hot wall (Y = 1). There is only a negligi
ble effect on the fluid flow near the cool wall, and at Gr/Re = 
500, the maximum velocity is still not much larger than 1.5. 
This may be contrasted with UWT case of [4] for which the 
maximum fluid velocity is close to 2.0 when rT = 0.5, Gr/Re 
= 250, and X = 0.1. When Gr/Re is fixed at 250, comparison 
of the profiles for various streamwise distances with those in 
[4] gives reinforcement to the inference that buoyancy has a 
much larger effect in UWT than in UHF. Certainly, fluid 
velocities are larger adjacent to the hot wall in UWT. As 
pointed out in [4], the large flow rates in the region near the 
hot wall must be augmented, in mixed convection where the 
rate of flow entering the channel is controlled by a blower (as 
opposed to a suction fan at the exit) at the entrance, by fluid 
flow coming down the top of the channel along the cool wall, 
thereby leading to the occurrence of flow separation inside the 
channel in UWT. The implication of the above discussion is 
that in UHF the likelihood of flow separation is reduced if not 
completely eliminated. Within the ranges of parameters 
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Fig. 4 Comparison of temperature development with UWT 
(rT = rH= 0.5; Gr/Re = 250) 

The axial distribution of the dimensionless pressure for rH 

= 1 shows a trend that is similar to that in UWT; however, 
here too the effect of buoyancy is not as significant. The 
available information suggests that even at a relatively small 
value of Gr/Re, the pressure P eventually becomes positive 
when X is sufficiently large. 

Heat Transfer Parameters. In the present study, heat 
transfer results have been obtained for Pr = 0.72. An exam
ination of the thermal results obtained also reveals a smaller 
effect due to buoyancy as compared with UWT. Figure 3 
depicts typical development of the temperature profiles for rH 

= 1 for a fixed value of Gr/Re = 250. At large X, the curves 
become parallel to one another, suggesting equal axial 
temperature gradient throughout the flow. This is of course a 
characteristic of thermally fully developed flow. A constrast 
between UHF and UWT in the thermal profiles is provided in 
Figs. 4(a) and 4(b). The profiles in UWT degenerate into a 
linear one at large X, while in UHF they maintain a self-
similar concave shape in FDF. 

The axial variations of the wall temperatures are given in 
Figs. 5(a) and 5(b) with Gr/Re as a parameter. The effect of 
buoyancy is to decrease the wall temperatures, but the impact 
on the cool wall, when rH = 0.5, is negligible. This is consis
tent with the picture presented by the temperature distribution 
when X is kept fixed but Gr/Re is allowed to vary [5]. In this 
case, the temperature on the cool wall is found to be virtually 
unchanged as Gr/Re increases, but the hot wall temperature is 
reduced. 

The wall temperatures, particularly the cool wall 
temperature, are sensitive to the parameter rH. In Fig. 6(a) the 
cool wall temperature is plotted versus X for a fixed Gr/Re = 
250, but rH is allowed to vary. Note the drastic variation of the 
curves for different rH. In Fig. 6(b), the corresponding plot 
for the hot wall temperature is presented. The trend is the 
same but the variations on the hot wall due to rH are much 
smaller. 
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Fig. 5 Axial variation of the wall temperature for rH = 1.0 and 0.5 

In engineering applications involving duct flow, a local 
average fluid temperature is often necessary information. A 
commonly employed average temperature is the bulk 
temperature, defined by 

s: UOdY 

i: UdY 

In this study, this parameter is evaluated as a function of axial 
position. In UWT, the bulk temperature approaches a con
stant value at large X, and the asymptote depends" oh' Gr/Re 
except when rT = 1, in which the asymptote is 1 for all Gr/Re. 
In the present case, thermal energy is supplied to the fluid at 
constant rates from the two walls along the entire duct; hence 
6b varies linearly with X, and is a function only of the rate of 
energy input, i.e., on rH, and not on Gr/Re. The presentation 
of the results can be simplified by defining the wall 
temperature in terms of the average of the two wall heat 
fluxes, instead of the hot wall temperature. Thus, the dimen-
sionless hot wall temperature becomes 

where a = 

Hence, 

"l a b/k 

-(qi+q1)/2 = q1(rH+\)/2. 
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Similarly, 

20, 

ir„+ 1) ' 
and the average of the two wall temperatures at position X is 
given by 

(rH+l) The quantities 6b and 0„ are plotted in Fig. 7 for Gr/Re = 
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250. For each parameter, a universal curve valid at any value 
of rH results. 

Conclusions 

It is evident that there are significant fundamental dif
ferences between UHF and UWT in mixed convection between 
asymmetrically heated vertical plates. In UHF, buoyancy in
troduces a lesser degree of skewness in the velocity profiles 
and thus exerts a lesser influence on both the hydrodynamic 
and thermal parameters of the problem. Similarly, flow rever
sal is more prone to occur in UWT than UHF; in fact, up to a 
value Gr/Re = 500 no flow reversal is predicted in the present 
analysis for any value of rH. 
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Dispersion Phenomenology of LNG 
Vapor in the Burro and Coyote 
LNG Spill Experiments 
Various physical phenomena affecting LNG vapor dispersion were observed in LNG 
spill experiments conducted by the Lawrence Livermore National Laboratory. 
Understanding the phenomena is necessary in predicting the size of the hazardous 
region of vapor concentration following a spill. Gravity flow of the cold dense vapor 
increased cloud width while density stratification and heat flow from the ground had 
substantial effects on the mixing rate with air. Density stratification inhibits tur
bulent mixing while heat flow into the cloud promotes it through a number of 
processes including buoyancy. Some possible instances of buoyancy were observed 
in the experiments, and calculations indicate that modest amount of additional heat 
might substantially increase cloud dispersion. In the experiments, these phenomena 
led to a dependence of the maximum distance £ to the lower flammability limit on 
source rate, wind speed, and atmospheric stability that was substantially different 
from the prediction of the Gaussian plume model. Including these phenomena in 
predictive models is important for their accuracy. Time-dependent features of the 
concentration field due to turbulence and rapid phase-transition explosions, which 
also affect £, were examined by applying a space-time interpolation scheme to the 
concentration data. 

Introduction 
Understanding the physical phenomena affecting the disper

sion of LNG vapor following an LNG spill is necessary to 
predict the location and size of the flammable region of vapor 
concentration. Observation of these phenomena and the quan
titative measurement of their manifestations was a major pur
pose of the Burro and Coyote series of liquefied natural gas 
(LNG) spill experiments. These DOE-sponsored experiments 
were conducted at China Lake, CA, in 1980 and 1981 by 
Lawrence Livermore National Laboratory in cooperation with 
the Naval Weapons Center. The experiments involved the 
release of LNG vapor from LNG spilled onto water at a steady 
rate. The spills were of sufficient duration that the resultant 
vapor clouds achieved steady-state conditions [1]. In their con
tinuous nature the experiments were similar to most of the 
Maplin Sands LNG spill experiments [2] and different from 
the instantaneous heavy gas releases that constituted most of 
the Thorney Island experiments [3]. Koopman et al. [4, 5] and 
Goldwire et al. [6] give detailed descriptions of the ex
periments and the data collected, as well as the methods and 
results of the data analysis. Morgan et al. [1] describe 
dispersion-related features and data-model comparions, while 
Rodean et al. [7] analyze the data from burns of the LNG 
vapor cloud conducted in the Coyote experiments shortly after 
spill termination when steady-state conditions were present. In 
this report we discuss the results of studies of the 
phenomenology of LNG vapor dispersion as observed in these 
experiments. 

LNG (liquefied natural gas) is composed principally of 
methane, with molar fractions of ethane between about 5 and 
20 percent. It also contains propane and other compounds in 
much smaller amounts. LNG vapor poses a flammability 
hazard because it can ignite and burn at volume concentra
tions between the approximate 5 percent LFL (lower flam
mability limit) and the 15 percent UFL (upper flammability 
limit). Concentrations here and throughout are volume 
(molar) concentrations unless otherwise noted. 

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
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The physical phenomena that affect dispersion of LNG 
vapor are due to or influenced by the fact that the vapor is in
itially denser and colder than air. Turbulent mixing of the 
vapor with air is reduced by stratification resulting from the 
density difference. This reduction leads to higher concentra
tions and a greater extent of the hazardous region, and hence a 
greater value of £, the maximum observed downwind distance 
from the source to the point at which concentration is equal to 
the LFL considering all times and horizontal and vertical 
crosswind locations. Because of the density difference between 
LNG vapor and air, the vapor cloud that results from mixing 
will undergo gravity flow. This effect can widen the vapor 
cloud and increase the ground area covered by the hazardous 
region. 

LNG vapor is heavier than air only because it is cold 
( - 160°C to - 155°C initially, depending on ethane concen
tration); at ambient temperature it is lighter than air. Thus, 
heat flux from the surroundings, in particular from the 
ground, can lessen the density difference. Heat flux promotes 
convective turbulence, which also leads to greater mixing with 
the air. Both of these effects reduce the value of £. Heat flux 
can also lead to buoyancy of the cloud, since at equal 
temperatures LNG vapor is lighter than air. 

Other phenomena that affect the value of £ are turbulence-
induced variations in concentration and puffs of gas released 
from the LNG source by RPT explosions when LNG is spilled 
into water [8, 9]. RPT (rapid phase transition) explosions in
volve the sudden change of some of the LNG in the water to 
LNG vapor. 

Experimental Observations 
The data gathered in the Burro and Coyote experiments 

show the effects of the phenomena pertinent to LNG vapor 
dispersion. The effects of gravity flow, RPT explosions, tur
bulent variations, and possible buoyancy are directly apparent 
in the vapor concentration data of the experiments. We see the 
other heat flow phenomena and the reduction in mixing due to 
density stratification by their overall effects on concentration 
and by their effect on the way £ depends on spill and 
meteorological parameters (described in a later section). 
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Table 1 Crosswind dimensions of the Burro 8 cloud com
pared to predictions of the Gaussian plume model for 400 m 
downwind 

Stability 
category 

D 

E 

Half-width 
Gausssian 

plume 
50 m 

35 m 

Experiment 

145 m 

Gaussian 
plume 
24 m 

18 m 

Height 

Experimemt 

< 8 m 

Horizontal concentration (% vol.) distribution at 1 m height 
Contours at 1, 2, 5, 10, 16, 25% 

COYOTE 5 Time (s) COYOTE 6 
(ua2 = 9.7 m/s, si. unstable) (ua2 = 4.6 m/s, neutral) 

Since the Burro 8 experiment was characterized by one of 
the highest spill rates of the tests, the lowest wind speed (1.8 
m/s), and the highest atmospheric stability, gravity flow 
effects were more pronounced in this test than in any of the 
others [10, 11]. Enhanced cloud width and the gravity-flow ef
fect of cloud bifurcation were observed; the concentration was 
lower along the cloud centerline than in the lobes on either 
side. The influence of the uneven terrain on gravity flow 
caused the cloud to move preferentially to the lower eleva
tions. In general, peak concentrations above any surface point 
were higher in Burro 8 than in any other test. This may have 
been partly a consequence of gravity flow, but is probably 
more a consequence of density stratification leading to re
duced turbulent mixing, coupled with the fact that Burro 8 
had the lowest ambient turbulence level of the experiments, 
due to low wind speed and relatively high atmospheric 
stability. 

The effects of gravity flow on the crosswind dimensions of 
the Burro 8 cloud are shown in Table 1. The measured cross-
wind dimensions of the cloud at one third of maximum cross-
wind concentration are compared to predictions of the Gaus
sian plume model [12] which does not include the effects of 
gravity flow. The observed width is about three times the 
predicted value, while the height is less than one-half of the 
prediction. Burro 8 had an ambient Richardson number at 2 m 
of +0.121, which places the ambient stability about midway 
between categories D (neutral) and E (slightly stable) for a sur
face roughness of 2.05 x 1 0 4 m [4, 13]. The half-width of 
the Burro 8 source is estimated to be about 10 m or less; thus 
the point-source Gaussian plume model was employed. It was 
earlier shown [10] that gravity flow leads to clouds consistent
ly wider and lower than predicted by the Germeles-Drake 
model [14] which includes some gravity flow effects. 

Gravity flow effects are significant, but to a lesser degree 
than in Burro 8, at the higher wind speeds in the other ex
periments. As shown in Fig. 1, gravity flow increased the 
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Fig. 1 The wider cloud of Coyote 6 is due to gravity flow. The high level 
of turbulence in Coyote 5 causes the formation of gas puffs. 

width of the cloud in Coyote 6 (wind speed = 4.6 m/s) over 
that of Coyote 5 (wind speed = 9.7 m/s). Although not di
rectly apparent in the figure, the excess width is also present in 
terms of width at a given fraction of maximum crosswind con
centration. For a neutrally buoyant gas cloud, width is in
dependent of wind speed, but inversely dependent on stability. 
Thus, without gravity effects, the Coyote 6 cloud would be the 
narrower, since the Coyote 6 test was conducted under more 
stable conditions. Gravity-induced spread is inversely de
pendent on wind speed, hence the narrower cloud of Coyote 5. 

Heat flow from the ground appears to have made part of 
the cloud buoyant in the Burro 9 experiment, as shown in Fig. 
2. In this figure, approximately the same portion of the Burro 
9 cloud is shown as it moves downwind and lifts off the 
ground. It is shown in the following section that heat from en
trained air is insufficient, in itself, to make the cloud buoyant. 

Buoyancy may have also occurred in the Burro 8 experi
ment. As shown in Fig 3, the left lobe of the cloud lifted off 
the ground at 400 m downwind. Liftoff of the left lobe at 400 
m was present during the time concentrations exceeded 1 per
cent, while liftoff of the right lobe was never observed. From 

a, A 

c 
^pa 

^ps 

cv 

D 
H 
h 

LFL 

LNG 
M„ 
Ms 

ms 

— n u m c u v i a i u i c 

= coefficients in fit for £ 
= air specific heat at con

stant pressure 
= LNG vapor specific heat at 

constant pressure 
= volume concentration of 

LNG vapor 
= duration of spill 
= heat added to cloud 
= dimensionless measure of 

H 
= lower flammability limit of 

concentration 
= liquefied natural gas 
= molecular weight of air 
= molecular weight of LNG 

vapor 
= mass of LNG vapor 

<7 
Qgm 

Ri2 

RPT 

Ta 

Ts 

t 
u 

"al 

^algm 

UFL 

= LNG spill rate 
= geometric mean of q 

values 
= ambient Richardson 

number at 2 m 
= rapid phase transition 

(explosion) 
= temperature of air 
= temperature of LNG vapor 
= time after spill begins 
= ambient wind speed 
= ambient wind speed at 2 m 
= geometric mean of ua2 

values 
= upper flammability limit of 

concentration 

X 

a, /3, y 
X 
V-
V 

P 
Pa 

a 

<t>2 

<t>2gm 

£ 

= downwind distance from 
source 

= exponents in fit for £ 
= Ms/Ma 

— C /C 
~ '-'ps' ^pa = T /T 

1 s' 1 a = density of cloud . 
= density of air 
= cross-sectional area of 

cloud 
= ambient Prandtl number at 

2 m 
= geometric mean of <j>2 

values 
= maximum distance to the 

LFL 

Journal of Heat Transfer NOVEMBER 1987, Vol. 109/953 
Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Vertical concentration contours (% vol.) 

n ' i ' i ' r 
Downwind distance 140m — 

Time 40s 

-80 -40 0 40 80 

Horizontal crosswind distance (m) 

-100 0 100 

Horizontal crosswind distance (m) 

10 

8 

6 

4 

2 

n 

i 

-

-

i 

I 

'O V 
I 

I ' I ' 
800m " 
160s -

— 

I , I 
-200 0 200 

Horizontal crosswind distance (m) 

BURRO 9 
Fig. 2 Concentration in a vertical, crosswind section of a portion of the 
cloud as it moves downwind. This portion of the Burro 9 cloud appar
ently becomes buoyant. 

cloud arrival times, it appears that the left lobe was moving 
more slowly than the right, thus it may have absorbed more 
heat from the ground, in an amount sufficient to make it 
buoyant. (Only momentary instances of liftoff occurred at the 
adjacient row of sensors closer to the source at 140 m down
wind. Only momentary liftoff was recorded at the next sensor 
row at 800 m, possibly because the major portion of the left 
lobe was outside the sensor array at that distance.) 

A calculation of the cloud density at the point of highest 
concentration in the left lobe, based on measurements of con
centration, temperature, and vapor composition, gives a den
sity of about 0.7 percent less than that of the surrounding air. 
Estimates of rise speed for that density difference give values 
sufficient to account for the observed degree of liftoff, but 
small uncertainties in the measurements yield an uncertainty in 
the density that is about the same size as the calculated density 
difference. 

An alternative explanation for the liftoff of the left lobe in
volves vortices along the lateral cloud edges that are generated 
by gravity-induced lateral flow [11, 15]. Such a vortex might 
entrain more air in its exterior portions resulting in higher con
centrations at its center. The point of maximum concentration 
in Fig. 3 may be the center of a vortex. These vortices are 
predicted by simulations of the Burro 8 experiment by the 
FEM3 computer model [16] for heavy gas dispersion. FEM3 is 
a fully three-dimensional model that has successfully 
simulated cloud structure, flow, and dispersion in the Burro 
and Coyote experiments [1]. 

The only other observed case of persistent liftoff in the ex
periments, although somewhat erratic, occurred in Coyote 5. 
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Fig. 3 Burro 8 vapor concentration (vol %) in the vertical crosswind 
plane at 400 m downwind of the spill. With directions defined by looking 
upwind, the left lobe of the cloud (left in the figure) has lifted off the 
ground (possible buoyancy). The centerline of the cloud is at about - 50 
m in the crosswind direction. 
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Fig. 4 Example of the effect of turbulent variation in 10-s averaged con
centration time histories. The results of SLAB model simulations are 
included. 

It occurred during the early through midportions of the time 
the cloud was present at downwind distances of 200 m and 
greater. Therefore, it may be more likely a consequence of the 
erratic cloud structure observed at the same time (see Figs. 1 
and 8) than of buoyancy. 

The effects of random and quasi-periodic turbulent varia
tions on 10-s averaged concentration data are illustrated in 
Figs. 4(a) and 4(b). Here concentration time histories from 
sensors at different horizontal crosswind locations are 
superimposed. Low-frequency variations in the wind direction 
(periods of a few tens of seconds or greater) are responsible 
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for cloud meander in the horizontal crosswind direction, 
which is most apparent in 4(b) where the relatively narrow 
cloud of Coyote 5 moves from right to left (looking upwind) 
during the test. Higher frequency turbulent variations are also 
apparent. Variations of concentrations in the downwind direc
tion are seen in Fig. 1 (see also Fig. 8) where there is a quasi-
periodic formation of gas puffs at the downwind end of the 
Coyote 5 cloud. This phenomenon was seen to such a degree 
only in that test and can be associated with the fact that 
Coyote 5 had the highest level of ambient turbulence in the 
experiments. 

Variability in concentration may also arise from shear in
stabilities and gravity waves and from variations in the source 
rate. One particular source rate variation is due to RPT explo
sions, which cause a sudden release of vapor from the spill 
pond. The puffs of vapor cause momentary increases in con
centration as they blow downwind, in particular at the higher 
elevations above the surface, e.g., the large peak in Fig. 4(b). 
The effects of RPTs are discussed in more detail in [17]. 

In the absence of the above variations, concentration time 
histories would have an appearance similar to the smooth 
curves in Figs. 4(a) and 4(b). These curves are the cloud 
centerline concentrations at the indicated downwind distance 
and heights taken from simulations of the Coyote 3 and 5 ex
periments using the time-dependent SLAB computer model [1, 
10, 18]. In the SLAB simulations, the fairly accurate assump
tion is made that the LNG evaporates as soon as it is spilled. In 
most cases, ensemble-averaged predictions of concentration, 
as SLAB makes, involve the presence of a steady state (flat 
tops of the curves) when the source is on at a constant rate for 
a sufficient time and the meteorological parameters are con
stant. The variations produce maximum values of concentra
tion that exceed the mean, steady-state values, thus leading to 
larger values of £ than would be present in their absence. 
Hence the importance of considering and quantifying the 
variations [21]. 

The time-dependent SLAB computer code referred to above 
is based on a one-dimensional, quasi-three-dimensional model 
for heavy gas dispersion in which the effects of turbulent mix
ing are modeled by entrainment. The entrainment speed is 
calculated as a function of ambient and local-cloud variables 
by an expanded version of Zeman's initial formula [19] for en
trainment of air into a heavy gas cloud. The expanded version 
adds parameterized dependence on friction velocity, velocity 
gradient, and convection scale velocity and is fit to relevant ex
perimental data [20] for ranges of these quantities that occur 
in heavy gas releases. The rate of heat flow into the cloud is 
calculated by a formula due to Zeman [19] or by an ex
perimentally based formula [4], Time-dependent SLAB was 
originated by Zeman [19]. It is described in [10], and details of 
its current form, capabilities, and useage are given in [1, 18]. 
Time-dependent SLAB has been successful in calculating the 
values of £ in the Burro and Coyote experiments [1, 22]. 

Heat Flow and Buoyancy 

Increasing temperature in the cloud reduces the density 
stratification (a dense cloud below lighter air), thereby bring
ing the initially low level of mixing closer to its ambient level 
and reducing lateral spread due to gravity flow. Heat flow 
from the surface promotes convention within the cloud which 
adds to the turbulent mixing rate. With sufficient heating, the 
cloud may become buoyant, and the upward motion lifts the 
cloud off the ground (away from some possible sources of ig
nition) and gives rise to further turbulent mixing. Thus, 
adding heat to the cloud has the potential for substantially 
reducing the hazardous area around an LNG spill. 

Except for the possibility of buoyancy, it is difficult to 
observe directly the effects of heat flow. However, heat flow is 

important in explaining how cloud properties depend on spill 
and meteorological conditions (see following section), and its 
effects may be separated from those of other phenomena by 
the use of computer models. 

In sensitivity studies based on the Burro 9 experiment [22, 
23], SLAB model simulations showed that reducing the local 
ground-to-cloud heat flow rate from the experimentally 
observed amount [4] to zero increased £ by 60 percent and 
more than doubled the hazardous area. Collenbrander and 
Puttock [2] have noted that inclusion of heat flux from the sea 
surface is important in modeling the Maplin Sands LNG 
experiments. 

The experimental results of the preceding section indicate 
that buoyancy was not generally an important factor to the 
value of £ in the Burro and Coyote experiments. Only for 
Burro 8 is it possible that buoyancy may have been significant 
at concentrations greater than or equal to the 5 percent LFL. 
For buoyancy to reduce the hazardous region, it must occur 
for concentrations above the LFL. However, the cases of 
possible buoyancy indicated in the previous section, the in
stances of momentary cloud liftoff, and the results of simula
tions of the experiments [1] indicate that the LNG clouds were 
frequently at least close to neutral density (about 1.003 of 
neutral density or less) when the concentrations were about 5 
percent or less. Thus, a small amount of additional heat might 
have produced buoyancy and significantly reduced the haz
ardous areas. The amount of heat required to produce buoy
ancy, for concentrations of 5 percent and above in particular, 
may be calculated. 

Under the assumptions that the ideal gas law applies and 
that the specific heats are constant, the ratio of dry air density 
pa to the density p of a mixture of dry air and LNG vapor at 
the same pressure is 

Pa l + (\ixv(l+h)-l)Cv 

P (l + (\-l)Cv)(l+(\n-l)Cv) 

(pa/p > 1 corresponds to buoyancy) where Cv is the volume 
(molar) concentration of LNG vapor in the mixture; where 

X = Ms/Ma, IJ. = Cps/Cpa, v = Ts/Ta 

with Ms, Cps, and Ts being the mean molecular weight, mean 
specific heat at constant pressure, and initial temperature of 
the LNG vapor (source gas), and Ma, Cpa, and Ta being the 
corresponding quantities for air; and where 

h =H/(TsCpsms) 

is a dimensionless measure of the heat H, in excess of the ther
mal energy provided by the warmer air, that flows into the 
cloud from the surroundings (principally the ground and/or 
water surface and any artificial sources), with ms being the 
mass of the parcel of LNG vapor being considered. 

The value of pa/p is shown in Fig. 5 as a function of h and 
Cv for 

M„ = 29.0 M, = 16.5 
Cpa = 0.24 cal/(Kg) Cps = 0.49 cal/(Kg) 
r a = 285K r s = 1 2 5 K 

These values are intended as a rough representation of the 
situation sometime after a spill has begun when ethane enrich
ment of the remaining LNG results in an initial vapor 
temperature about 10 K above that at the commencement of 
the spill and an ethane concentration in the vapor of roughly 1 
percent [4]. A more accurate calculation of pa/p requires con
sidering deviations from the ideal gas law, values of the 
specific heats as functions of temperature, density, and com
position, and accurate knowledge of how vapor composition 
and initial temperature depend on LNG composition, and the 
inclusion of water vapor. 
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Fig. 5 Contours of pa/p, the ratio of air density to LNG-vapor-cloud den
sity, as a function of h, a dimensionless measure of heat added to the 
cloud from external sources, and Cv, the volume concentration of LNG 
vapor in the cloud. The cloud is buoyant for pa/p > 1. 

The history of a portion of a cloud may be represented in 
Fig. 5 by a curve that begins in the lower right corner (h = 0, 
C„ = 1) and proceeds to the left, eventually ending somewhere 
on the left-hand edge where Cv = 0 and pa/p = 1. If no exter
nal heat is added {h stays equal to zero), the curve is horizontal 
and proceeds to the lower left corner, never passing through 
the buoyant region (pa/p > 1). Thus, if no external heat is 
added, the cloud can never be buoyant, even though the 
molecular weight of the LNG vapor is less than that of air. 
This circumstance occurs because 

Cps Ma/Ms-\ 

C X — T/T 
'-'pa 1 J s' J a 

for LNG vapor. (The relation is equivalent to the derivative of 
pa/p with respect to C„ being nonpositive at C„ = 0). Because 
Cps is larger than Cpa (about twice the value), the vapor cools 
the air more than the air warms the vapor when they mix. This 
effect is sufficient to maintain pa/p < 1 in spite of the lower 
molecular weight of LNG. 

It is possible for a portion of the cloud to become buoyant 
as Cv decreases with mixing and then become denser than the 
air again as C„ proceeds to still lower values. This possibility is 
illustrated by the dashed curve in Fig. 5. Here a relatively high 
rate of heat flow while C„ is large leads to pa/p = 1.01 
(buoyant) at C„ = 70 percent. Then, with a relatively low rate 
of heat flow, further mixing gives pa/p = 0.999 (negatively 
buoyant) at C„ = 5 percent. Thus, in this example, between 
C„ = 70 percent and C„ = 5 percent the density increases 
despite a small amount of added heat (Ah — 0.06). For Ma > 
Ms, the case here, this circumstance occurs because 

Cps Ma 

Cpa Ms 

for LNG vapor (the relation is equivalent to the slope of the 
pa/p = 1 line in Fig. 5 being negative). 

The amount of heat, in terms of h, that must be added to 
produce a given value of pa/p for Cv = 5 percent (the LFL) is 
shown in Fig. 6. The amount of heat that must be added to 
reduce £ and the hazardous area substantially is presently 
unclear. A value of h — 0.4 (about 25 calories per gram of 
LNG vapor) gives pa/p = 1 at C„ = 5 percent. If this amount 

0.99 1.00 1.01 1.02 1.03 

p /p 

Fig. 6 The value of h required to give particular values of pjp for C„ = 
0.05 * 

of heat is added early, while C„ > 70 percent, then pa/p = 
1.03 for C„ = 70 percent (see Fig. 5) and the mean value of 
pa/p is about 1.01 for Cu between 70 and 5 percent. If h = 0.8 
for similar circumstances, then pa/p varies from 1.3 to 1.01 
for Cv from 70 to 5 percent with a mean pa/p of about 1.1. If 
these amounts of heat were added when C„ = 1, they would 
increase the temperature of the LNG vapor by about 50 K and 
100 K, respectively. The earlier the heat is added to the vapor, 
the more effective it is in dispersing the cloud, because higher 
levels of buoyancy can be achieved at higher concentrations 
for the same amount of heat and because buoyancy is present 
for a longer time. Natural sources of heat tend to add heat 
early due to the large temperature differences between cloud 
and surroundings when the vapor concentration is high. 

Effect of Dispersion Phenomenology on the LFL 
Distance 

The Burro and Coyote experiments involved a variety of 
values for the spill and meteorological parameters present in 
the tests. It is thus possible to investigate the strength of the 
dependence of the observed maximum LFL distance on these 
parameters within the respective ranges of their values over the 
tests. Such information can provide additional insight into the 
phenomenology of LNG vapor dispersion; in particular it can 
indicate the degree to which this dispersion differs from that 
of trace pollutants. 

Since the experiments involved a single substance, LNG 
(with little significant variation in composition), and a single 
site, some of these parameters did not vary significantly from 
test to test. Among these parameters are source density, source 
temperature, surface roughness, and terrain features. Three 
parameters which varied significantly, and on which we expect 
to see a dependence, are source rate, wind speed, and at
mospheric stability. These parameters have a strong effect on 
the turbulent mixing of air into the cloud, the degree to which 
gravity spread occurs, and the amount of surface heat flowing 
into the cloud. The ambient humidity was too low in all ex
periments and the ambient temperature too constant from ex
periment to experiment for either of these quantities to have a 
significant effect. 

It should be emphasized that what is sought here is a 
knowledge of how strongly <£ depended on the fundamental 
meteorological and spill parameters in the Burro and Coyote 
experiments. One might ask how £ depended on quantitative 
measures of turbulent mixing, density stratification, gravity 
flow, heat flow, etc., but such quantities are intermediate in 
the present argument in the sense that they, through the 
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physics involved, depend on the fundamental parameters. The 
intermediate quantities describe the physical phenomena that 
mediate the dependence of £ on the fundamental quantities, 
and these phenomena will be considered in interpreting the 
dependencies of £ that are found. 

To determine the strength of dependence, we assume 

with 

£ = aqau\2$l 

a=A(q%„u'i
a2gm<f>2gm 

(1) 

A, a, /?, and y are constants to be determined, q is the LNG 
spill rate (the liquid is assumed to evaporate as fast as it is 
spilled), and ua2 is the wind speed at a height of 2 m. The 
quantity </>2 is a nondimensional similarity profile parameter 
evaluated at a height of 2 m. In our treatment of the surface 
boundary layer, 4>2 is the ambient Prandtl number at 2 m and 
is related to the ambient Richardson number at 2 m (Ri2) by <j>2 

= 1 + 5Ri 2 forRi 2 > 0 and </>2 = (1 - 16 Ri2)"1 / 4 for Ri2 < 
0 [4]. The quantities qgm, ua2gm, and <j>2gm are the ge
ometric means of the values of q, ua2, and </>2 that were present 
in each set of experiments to which equation (1) will be ap
plied. Values of £ , q, ua2, and <t>2 are given in Table 2. (Spill 
durations, D are also included.) The values of £ are our most 
recent values determined from peak concentrations (for any 
horizontal or vertical crosswind location and any time) 
measured as a function of downwind distance for the 11 ex
periments [1]. The values of £ were determined by fitting the 
logarithm of the peak concentration as a function of the 
logarithm of x (downwind distance) for each experiment by a 
straight line. In each case, three or four points were used and 
were weighted according to the closeness to an estimated £ 
and reliability of the data. This procedure decreased the ef
fects of instrumental uncertainties and of instances where 
cloud regions of relatively high concentration may have passed 
between sensors. RPT-caused concentration peaks were not 
considered in determining £ . Previous determinations of £ 
used simpler procedures and included the effects of RPT ex
plosions. These explosions occurred in three experiments [17] 
and led to increases in £ as high as 50 percent [1]. We estimate 
that the values of £ have a common one-sigma systematic 
uncertainty of about ± 10 percent and an approximately 
equal, uncorrelated random uncertainty, leading to an overall 
uncertainty of ± 15 percent [1]. 

To determine values for A, a, /3, and y in equation (1) we do 
a least-squares fit of a flat hypersurface in In q, In ua2 In, 4>2 to 
the values of In £ . Besides using the set of all tests for which 
LFL distances could be determined (those listed in Table 2), 
we also used a set containing seven tests that were chosen for 
additional analysis [1]. Overall, these selected tests had 
somewhat better concentration data. Additionally, in obtain
ing the results which are given in Table 3, we chose a set with 
all 11 tests except Burro 8, because that test was unique in 
terms of wind speed and ambient stability. 

We applied standard statistical analysis to obtain the uncer
tainties given in Table 3 for the 11-test case, although the 
uncertainty in A has been increased to include the estimated 
± 10 percent systematic uncertainty which is not treated by the 
statistical analysis. The analysis presumes that there is no 
significant correlation between the values of q, ua2, and <p2, as 
may be seen from Table 2. The estimated one-sigma random 

uncertainty of ± 10 percent from the statistical analysis is in 
agreement with our independent estimate of the same value. 
The relative rms difference between the fit values of £ and the 
experimental values is 8 percent. As should be the case, this is 
close to the 10 percent magnitude of the random uncertainty. 
It is significant that exclusion of the parametrically unique 
Burro 8 test does not substantially alter the values of the quan
tities in Table 3. Thus, the value of its LFL can be determined 
to a fair accuracy using the results of the other experiments in 
equation (1). This fact indicates that the physical phenomena 
which cause Burro 8 to have such high levels of concentration 
are also important in the other experiments. 

Using the determined values for A, a, /3, and 7, equation (1) 
becomes 

/ a \ 0.07 d= 0.22 

£ = (230±25 m)( H , ) 

\ 14.0 mVmin/ 

/ Ua2 \ -0 .21*0 .09 , ^ v 0.57±0.18 

\ 6 . 1 m / s / V0.88/ ' 
which applies only to the parameter space spanned by the 
Burro and Coyote experiments. Considering the ranges in 
values of q, ua2, and 4>2 in the 11 tests (q varies by a factor of 
1.6, ua2 by 5.4, and <j>2 by 2.5), it may be seen from equation 
(2) that £ depends more strongly on atmospheric stability (as 
represented by 4>2) than on either wind speed or source rate, 
within the parameter space of the set of 11 Burro and Coyote 
experiments. Further, the values and uncertainties of/3 (-0.21 
± 0.09) and y (0.57 ± 0.18) make it clear that we have indeed 
observed a dependence of £ on both wind speed and at
mospheric stability. The small value of a (0.07) relative to its 
uncertainty (± 0.22) shows, however, that the strength of 
dependence of £ on q has not been accurately determined, 
evidently due to the small range in values of q. Nevertheless, it 
is possible to put an upper limit on its value. At the 65 percent 
confidence level (one standard deviation) this limit is a < 
0.29, and at the 95 percent confidence level (two standard 
deviations) it is a < 0.51. 

To understand further the meaning of the experimentally 
determined dependence of £ shown in equation (2), this 
dependence may be compared to similar results obtained from 
the Gaussian plume model [12] for the dispersion of trace 
gases. This model includes the effects of mixing due to am
bient turbulence, but does not include the alteration in mixing 
due to the density difference, nor the effects of gravity flow 

Table 2 Values of q, ua2, <A2, £ , and D for the set of 11 of the 
Burro and Coyote experiments 

Experiment 

B2 
B3 
B4 
B5 
B6 
B7 
B8 
B9 
C3 
C5 
C6 

<7> 
m 3 / m i n 

11.9 
12.2 
12.1 
11.3 
12.8 
13.6 
16.0 
18.4 
13.5 
17.1 
16.6 

" B 2 . 

m/s 

5.4 
5.4 
9.0 
7.4 
9.1 
8.4 
1.8 
5.7 
6.0 
9.7 
4.6 

<t>2 

0.71 
0.68 
0.85 
0.81 
0.88 
0.94 
1.61 
0.95 
0.64 
0.82 
1.14 

£, 
m 

230 
180 
190 
220 
215 
240 
445 
270 
195 
205 
250 

D 
s 

173 
167 
175 
190 
129 
174 
107 
79 
65 
98 
82 

Table 3 Values of A, a, /S, and y of equation (1) for three combinations 
of Burro and Coyote tests 

Test set A a /S 7 

Eleven tests 
Seven tests 
No Burro 8 

232 ± 25 m 
243 m 
217 m 

0.07 ± 0.22 
0.16 
0.13 

-0 .21 ± 0.09 
-0 .17 
-0 .13 

0.57 
0.65 
0.45 
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and heat flow from the surface. Application of the Gaussian 
plume model to our experiments gives [1] 

£ = 1 1 8 ( l4 .0mVmin) \~6A^7l) KOM) 0) 

where the initial constant in equation (3) has the units of 
meters. This constant is lower in value than that in equation 
(2) due, at least in part, to the different averaging time for our 
data (10 s) and that assumed in the Gaussian plume model 
(roughly 10 min). Longer averaging times lead to somewhnat 
smaller values of average concentration [13]. 

It is noteworthy in comparing equation (2) to equation (3) 
that the observed strengths of dependence of £ on source rate, 
wind speed, and atmospheric stability are all significantly less 
than predicted by the Gaussian plume model. However, the 
Gaussian-plume results also give £ as being most strongly 
dependent on atmospheric stability (in terms of </>2). 

The lower dependence of £ on ambient stability (02) for 
LNG vapor dispersion probably occurs because the mixing of 
air into a cloud of cold, dense gas at relatively high concentra
tions is influenced to a significant degree by processes involv
ing the cloud iteself, not only by the surrounding atmosphere, 
while the mixing of a trace pollutant is influenced solely by the 
atmosphere. Parameter studies with the SLAB model showed 
a dependence of £ on atmospheric stability similar to equa
tion (2) [22, 23, 24], 

The much lessened dependence of £ on wind speed (ua2) 
follows from the way in which wind speed affects turbulent 
mixing. For fixed values of source rate and atmospheric 
stability, the concentration is inversely proportional to the 
product of wind speed u and cross-sectional area a in a cross-
wind volume element of the cloud at a fixed downwind 
distance x when x is sufficiently large for cloud speed to equal 
wind speed. In the Gaussian plume model, a is independent of 
wind speed, since the speed of turbulent spread in the lateral 
directions is proportional to wind speed in that model. Thus, 
concentration is proportional to u ~', and £ is approximately 
proportional to u~in (see equation (3)) since a is approxi
mately proportional to x2. For cold, dense clouds, however, 
the speed of lateral spread is less than proportional to u [18], 
so a decreases with increasing u (as can be seen in the Burro 
and Coyote data), leading to the dependence of £ on ua2 in 
equation (2). The lowered proportionality of crosswind speed 
to wind speed (for other parameters constant) follows from 
the apparent dependence of the mixing rate on wind speed 
when density stratification is present [18], from the 
dependence of mixing on the flow of heat from the surface in
to the cold cloud, and from the effects of gravity flow. As 
wind speed increases, the heating rate goes down, decreasing 
the contribution of convection-induced turbulence to mixing; 
hence less crosswind spread of the cloud. The lowered heating 
rate helps maintain the air/cloud density difference, and it 
also reduces convective mixing. Further, the contribution of 
gravity flow to the horizontal crosswind spread of the cloud 
decreases as wind speed increases. 

In spite of the uncertainty in a, it is very probable that £ 
depended less strongly on source rate in the set of 11 Burro 
and Coyote experiments than it does in the case of a trace 
pollutant. One possible explanation for this difference in
volves gravity flow. With other parameters held constant, an 
increase in q would lead to an increase in cloud width due to 
increased effects of gravity flow. (For trace pollutant disper
sion, cloud width is independent of source rate.) The conse
quently greater surface area of the cloud results in more air be
ing mixed in, thus mitigating the increase in concentration 
from a larger q that would otherwise occur: hence the lessened 
dependence of £ on source rate. At higher spill rates than 
were present in the experiments, a stronger dependence on q is 
expected since, at any given radius from the source, the width 
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Fig. 7 Example of the effect of averaging time on concentration time 
histories 

(along an arc) cannot increase beyond the point where the 
cloud completely surrounds the source, thus dampening the 
increase of cloud surface area with q. For such circumstances 
and under steady-state conditions, the area of the 5 percent 
(LFL) concentration surface is approximately proportional to 
£2. The area is also proportional to q if it is assumed that the 
mixing rate per unit area on the 5 percent concentration sur
face is independent of q. Thus, if the latter assumption is cor
rect, £ is then approximately proportional to q05. For very 
small q, where the vapor would disperse as a trace pollutant 
(see equation (3)), a is also about equal to 0.5 (for other 
reasons). The set of 11 Burro and Coyote experiments was ap
parently conducted in a portion of parameter space where 
lower values of a apply. 

Effects of Concentration Variation 

Turbulence and other effects cause measured values of con
centration to vary in time above and below their mean steady-
state values. Consideration of this variation is important in 
determining £ and interpreting its meaning and in relating the 
concentration field to the burn characteristics of a cloud. 

Because of the time variations in concentration, peak values 
of concentration, and hence £, are affected by the averaging 
time used for the data (see [21] for a discussion of peak-to-
mean ratios). In Fig. 7 a comparison is made between concen
tration time histories for a 2-s averaging time and our normal 
10-s averaging time. The various local maxima of concentra
tion are up to 40 percent greater for the 2-s averaging time. Ex
amination of all of the Coyote gas concentration data using a 
2-s average instead of the normal 10-s average likewise shows 
increased peak concentration values reflecting the random 
variations in the data. Peak concentration values at the 140-m 
row of sensors are more influenced by the averaging interval 
than concentrations in the 200 and 300-m rows, which are 
closest to the LFL. Sample calculations give increases in £ 
that are, however, less than the 15 percent uncertainty we 
estimate in the experimental values of £ . 

Assessment of the effects of concentration variation in our 
data suffers from the fact that many of the variations, as from 
RPT puffs, are due to variations in cloud structure that are 
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Fig. 8 Comparison of 2-s average horizontal concentration contours 
employing the normal space interpolation method with the space-time 
interpolation method 

In such cases, the cloud may be present at only one sensor row 
at a time. This means of interpolation, in effect, spreads the 
cloud out in the downwind direction so that it occupies the full 
array at any one interpolation time. 

Examples of space-time-interpolated horizontal concentra
tion contours are shown in Fig. 8 where they are compared to 
the same results with fixed-time interpolation. Data averaged 
over a 2-s interval are employed. Here the time-dependent in
terpolation scheme was implemented by creating two rows of 
grid points between adjacent rows of sensors in the 140-400 m 
region. The concentration for the new points was calculated 
from the values at the adjacent up/downwind sensors by a 
linear interpolation of the gas data registered at the times 
calculated from the above formulae. The logarithms of the 
values were then used to obtain the contours (as employed in 
part in [6]). Greater detail of the turbulent eddies in the 
Coyote 5 experiment may be seen in the space-time-
interpolated results. 

smaller in size than the downwind distances between the sen
sor rows in the Burro and Coyote experiments. Thus, when 
concentration data are interpolated between rows at a chosen 
time, the effect of a small-size variation may not be present 
because it is between the rows at the time of interpolation. 
This difficulty is partly overcome when determing £, which 
we define as the maximum observed distance to the LFL, by 
basing its value on observed values of peak concentration over 
the duration of the experiment, irrespective of the time at 
which they occurred. These values are interpolated in a least-
squares, log-log sense described by Morgan et al. [1] to deter
mine £ (summarized above). However, the values of peak 
concentration employed may include the effects of entirely 
unrelated variations, and the value of £ so determined may 
not, therefore, represent an actual maximum distance to the 
LFL that occurred during an experiment. 

An additional problem associated with these variations 
arises in relating characteristics of the burn regions in the 
Coyote experiments to the values of concentration between 
rows [7]. Downwind interpolation of concentration values at 
fixed times can give erroneous estimates of the position of the 
5 percent LFL concentration contour between rows due to the 
small-scale variations. To overcome both of these difficulties, 
we have investigated a space-time interpolation scheme which 
appears useful in better displaying time-dependent features. 

To interpolate concentration to a given value of x at time t, 
we use the value of concentration at the adjacent upwind row, 
measured at the time t — (x — xu )/u and the value of concen
tration measured at the adjacent downwind row at the time t 
+ (xd — x)/u, where xu and xd are the downwind distances 
of the two rows and where we assume the cloud moves at am
bient wind speed u. Thus, the interpolation is carried out be
tween two manifestations of the same physical portion of the 
cloud at different times as it moves downwind. Variations in 
concentration due to any cloud feature moving with the cloud 
that maintains its identity will therefore be reproduced at 
between-row locations. Values of £ can then be based on the 
same variation as it moves downwind. In addition, the upwind 
and downwind edges of the cloud can be followed more ac
curately as well as the time-dependent position of the LFL or 
any other concentration contour. Because time variations at 
different rows now have a higher degree of correlation, a 
logarithmic interpolation scheme [6] can be employed more 
universally. With fixed-time interpolation, a logarithmic 
scheme can give unrealistic values when large variations are 
present. Space-time interpolation should be suitable, in par
ticular, for cases involving other than LNG vapor that arise 
when concentrations must be measured over great distances. 

Conclusions 

The Burro and Coyote LNG spill experiments have 
permitted quantitative observation of the effects of the 
physical phenomena pertinent to the dispersion of LNG 
vapor. 

Three of these phenomena occur because LNG vapor, 
evaporating from the cryogenic liquid, is colder and denser 
than air. These are gravity flow, density stratification, and 
heat flow from the ground. The fourth phenomenon is time-
dependent variation in concentration caused by turbulence 
and by RPT explosions which can occur when LNG is spilled 
onto water. The experiments have shown that these 
phenomena can have a substantial effect on the size and shape 
of the hazardous region following a spill. 

Gravity flow greatly increased the width of the cloud in the 
low wind-speed Burro 8 test, substantially increasing the area 
of the hazardous region. Significant but less pronounced 
effects of a similar nature were observed at higher wind 
speeds. Density stratification, which reduces mixing with the 
air, and heat flow from the ground, which enhances mixing, 
have significant effects along with gravity flow on £, the max
imum observed distance to the lower flammability limit. In 
particular, for the spill and meteorological conditions of the 
experiments, £ depends on source rate, wind speed, and at
mospheric stability in a substantially different manner than 
predicted bv the Gaussian plume model, due to these par
ticular phenomena. 

Buoyancy of the cloud (possibly observed in the ex
periments) can lift it above sources of ignition and substan
tially enhance mixing. Calculations show that buoyancy can 
be achieved by heat, in addition to that from the mixed-in air, 
entering the cloud from external sources, and that only modest 
amounts are required. 

The experimental results in regard to the phenomena impor
tant to LNG vapor dispersion are supported by studies 
employing the SLAB computer model in which the 
phenomenological effects as well as the £ dependencies can be 
separated. Together, the results demonstrate the necessity for 
inclusion and proper treatment of the phenomena in predictive 
models of LNG vapor dispersion. 

Time-dependent variability in concentration causes the 
hazardous region to vary with time and can alter the value of 
£. A space-time interpolation scheme for the concentration 
data gives a much improved picture of the effects on the con
centration data, and hence £, of variations having a size that 
is about the same or less than the distance between sensor 
rows. 
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Introduction 

Research on alternative energy resources has intensified 
during the past few decades as a consequence of the alarming 
increase in energy cost. Effective thermal energy storage 
systems have become a true necessity, especially in solar 
energy applications. 

Using the phase change of some materials in thermal energy 
storage systems is advantageous in various ways. For example, 
the heat capacity of the storage reservoir is tremendously in
creased (on a unit volume basis), since latent heat of fusion is 
involved. In addition, there are advantages as far as heat 
transfer from and to the reservoir is concerned. 

Until recently, most papers on phase change dealt exclusive
ly with conduction heat transfer, although it has been known 
for some time that natural convection may play a key role dur
ing melting and freezing. Lately, however, several studies 
(Viskanta, 1983) considering buoyancy effects on phase-
change heat transfer have been reported. Among various con
figurations under study, melting about a vertical plate and 
around a vertical cylinder are of special interest, due to their 
occurrence in engineering applications. In this connection, the 
first numerical accounting for natural convection effects is 
presented in Sparrow et al. (1977), where the outward melting 
from a vertical cylinder was investigated for an isothermal 
boundary condition at the cylinder surface and a no-slip con
dition at the top of the liquid layer. A boundary condition of 
timewise constant heat flux at the cylinder was studied ex
perimentally in Kemink and Sparrow (1981), where both slip 
and no-slip boundary conditions were investigated. 

More recently, numerical and experimental results were 
compared in Ho and Viskanta (1984) for melting near an 
isothermal vertical plate, and a moderate agreement between 
the experimental and analytical predictions was reported. A 
better agreement was obtained by Okada (1984, 1985). Kalhori 
and Ramadhyani (1985) presented experimental data for 
melting around finned and unfinned vertical tubes. They ex
amined the case of L/rw = 20, Ra = 5.85 x 109, and very large 
times. 

The present paper reports on experimental measurements 
undertaken to investigate outward melting around a vertical 
cylinder embedded in a solid initially at its fusion temperature. 
The cylinder is maintained at a uniform temperature that ex
ceeds the fusion temperature. The top and bottom of the 
phase-change material are adiabatic, and a small air gap pro
vides a slip boundary condition at the top. The main objective 
of the research reported here was to obtain experimental data 
for the abovementioned configuration. It is remarkable that, 
although the isothermal boundary condition at the heat source 
has been extensively studied experimentally for melting to a 
vertical plate (e.g., Ho and Viskanta, 1984; Okada, 1983), 
there are very few experimental data available for melting to 
an isothermal cylinder positioned vertically. 

The Experiment 

The physical situation in the laboratory will now be de
scribed. An infinite horizontal layer of a phase-change 
material is initially solid and at its fusion temperature T*. A 
vertical cylinder is embedded in the solid and is in thermal 
equilibrium with the phase-change medium. Both the upper 
and the lower surfaces of the medium are adiabatic. The upper 
surface is in contact with atmospheric air (no shear stress), 
whereas at the lower surface a no-slip boundary condition is 
imposed. At time / = 0, the cylinder temperature undergoes a 
step change to TW>T*. Immediately, melting begins to occur, 
and a solid-liquid interface starts to move outward from the 
cylinder. 

The experiments carried out in this work were aimed at the 
determination of the solid-liquid interface behavior. The ex
perimental apparatus employed in the experiments, ex
perimental procedure, and data reduction procedure are 
briefly described in the following subsections. A more detailed 
description can be found in Pinho Brasil (1985), and in Pinho 
Brasil and Souza Mendes (1986). 

Experimental Apparatus. Figure 1 illustrates some details 
of the experimental apparatus, focusing on its test section. A 
cylindrical container for the phase-change medium, a 
constant-temperature bath, and a water-heated copper tube 
were the basic components of the experimental apparatus. An 
auxiliary vacuum system was also used to stop the data runs at 
predetermined instants of time. 

The container for the phase-change medium was a brass 
canister, 17 cm high and with inner diameter 15.2 cm. Its 
lower part was insulated by a 2.5-cm-thick layer of 
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Fig. 1 The test section 
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stryrofoam, and the upper part of the container was fitted 
with a 1.2-cm thick cap of plexiglass. 

The constant-temperature water bath provided a controlled 
thermal environment for the container. It consisted of an in
sulated tank equipped with a propeller for stirring an electric 
resistance, and a thermostatic device. It was very effective in 
maintaining the desired temperature level. 

The water-heated copper tube (2.54 cm o.d.) on which the 
melting occurred had three thermocouples positioned respec
tively at 3.50, 6.35, and 9.20 cm from the bottom, and equally 
spaced along the circumference. Each thermocouple was 
situated in a longitudinal groove machined into the outer sur
face of the tube, and then a high-conductivity cement was 
employed to fill the grooves. The surface was then polished to 
a smooth finish. 

Temperature measurements during the data runs showed 
that water circulation in the tube was a very effective means of 
providing an isothermal boundary condition at the tube sur
face. Experiments were performed for 7\v = 38.4, 45.3, 51.3, 
62.6, and 72.6°C. 

Experimental Procedure. The phase-change material used 
in the experiments was n-eicosane paraffin, 99 percent pure, 
with a melting point of 36.4°C. Prior to the data runs, the 
paraffin was placed inside the container by pouring small por
tions of liquid paraffin at a time and waiting for solidification 
to occur. During this process, the isothermal tube was at its 
normal data-run position, i.e., inside the container. Both the 
circulating water temperature and the bath temperature were 
set below the paraffin melting point, to enable solidification. 
Two thermocouples were embedded in the phase-change 
medium to provide means of temperature control and selec
tion. The final height of the phase-change medium was ap
proximately 12.7 cm (ten times the water-heated tube radius), 
and a small air gap between the upper surface was kept to ac
commodate changes in density of the paraffin due to phase 
change. 

Once the above-described solidification process was fin
ished, the temperature of the heating loop and constant-
temperature bath were increased to a value slightly below the 
melting point of the phase-change medium, in order to bring 
the paraffin to a temperature close to 36.4°C. After a long 
equilibration period, final adjustments were made to assure 
that the final equilibrium temperature of the phase-change 
medium was less than 0.5°C below its melting point. 

At this point, the water-heated cylinder was withdrawn 
from the container and its temperature was raised to a value 
TW>T*. Once thermal equilibrium was achieved at the 
cylinder, the data run was ready to start. The cylinder was put 
back to its data run position, and melting was initiated im
mediately. During the entire period of the run, both the water 

bath and the heating water were maintained at their respective 
fixed temperatures. To terminate the data run at a preselected 
time, the cylinder was withdrawn from the liquid paraffin 
and, simultaneously, the vacuum system was activated, 
removing the molten mass altogether. 

The final step of the experimental procedure consisted in 
measuring the melt-shape contour obtained from the data run. 
This was achieved by measuring the radial position of the in
terface for several axial (and angular) locations. The 
measurements were made with a special device designed and 
built for this application. 

Data Reduction. The data obtained in laboratory were 
treated to obtain the melting patterns, molten mass, and heat 
transfer coefficients as functions of the relevant parameters. 

The paraffin thermophysical properties were taken from 
Griggs and Yarbrough (1978) and Griggs and Humphries 
(1977), and were evaluated at the mean of Tw and T*. The 
melting patterns were determined directly from the contour 
measurement data, whereas the molten mass of paraffin was 
obtained for each data run via integration of the interface 
curves. 

The spatial-average Nusselt number at the heated cylinder 
surface can be related with the melting rate if the sensible heat 
absorbed by the liquid is neglected. The consequences of this 
assumption will be discussed shortly. Hence, an overall energy 
balance in the liquid region yields 

Nu = hL/k = (L/lrJdM/dr (1) 

Therefore, the average Nusselt number at the cylinder can 
be evaluated based on knowledge of the melted mass behavior 
with time. 

Uncertainty Analysis. The method of estimating uncer
tainties in experimental results proposed by Kline and McClin-
tock (1953) was employed in the present work. 

The uncertainty associated with the Rayleigh number was 
found to be 3 percent, whereas, for the dimensionless molten 
mass, the uncertainty estimated was under 6 percent for all 
cases investigated. It is worth noting that most of the results 
presented here depend on the dimensionless molten mass. 

Results and Discussion 

Experimental data were obtained for five values of the 
Rayleigh number Ra, namely, 7.1 x 107, 3.7x 108, 5.7x 108, 
1.1 x 109, and 2.0 x 109. These values correspond respectively 
to Stefan numbers of 0.017, 0.081, 0.120, 0.213, and 0.332. 

If the natural convection effects and the sensible heat ab
sorbed by the liquid are both neglected, analytical results can 
be readily obtained, yielding a useful baseline case for the 
subsequent discussion. An overall energy balance in the melt 

N o m e n c l a t u r e 

specific heat 
Fourier number = at/r\, 
acceleration of gravity 
spatial-average heat transfer 
coefficient at the cylinder 
surface 
thermal conductivity 
height of phase-change 
material layer 
molten mass of phase-change 
material 
dimensionless molten mass = 
m/p'wr2JL 

Nu = Nusselt number at the cylinder 
surface = hL/k 

c 
Fo 

k 
L 

M 

rw = 
r* = 

R * = 

Ra = 

Ste = 

T = 

T, = 
z = 

radius of heated cylinder 
melt layer position 
dimensionless melt layer 
position = r*/rw 

Rayleigh number = 
g0L3(Tw-T.)/va 

Stefan number = 
c ( r w - r , ) A 
time 
surface temperature of 
cylinder 
melting temperature 
axial coordinate, measured up
ward along cylinder 

Z = dimensionless axial coordinate 
= z/L 

a = thermal diffusivity = k/pc 
P = coefficient of thermal 

expansion 
X = latent heat of fusion per unit 

mass 
v = kinematic viscosity 
p = density of liquid phase-change 

material 
T = dimensionless time = Ste»Fo 

T, = critical dimensionless time 
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Fig. 2 Shapes of solid-liquid interface at various times 

region gives dR*/dT = l/(i?*ln/(.R*)), which, after integration 
from 0 to T and from 1 to R*, yields 

fl*(lnCR,)-l/2) = 2T-l /2 (2) 

Equation (2) is satisfied within 1 percent by 
fl„ = 1.274T0-4835 + l, forr<0.5. 

It is interesting to note that, for Ste<0.5, equation (2) is in 
very good agreement with the results found in Sparrow et al. 
(1978), where a more sophisticated analysis accounting for 
sensible heat is presented. This fact encouraged the authors to 
neglect sensible heat in the derivation of equation (1). 

It is easy to show that M= R\ - 1. Also, for this conduction 
situation, an effective heat transfer coefficient at the cylinder 
wall may be defined by h(Tw-T*) = k{Tw-Tt)/{rw\n{R*)), 
which yields, after rearrangement 

Nu = {L/r J/ln(7?*) (3) 

Interface Movement. Figure 2 illustrates the interface 
movement as a function of time. It can be observed that, for 
low Ra, the solid-liquid interface moves parallel to the heated 
cylinder, except for a small deformation at the top which ap
pears for larger times. Furthermore, the interface radial posi
tion at heights of no deformation is in close agreement with 
equation (2). This indicates that, for low Rayleigh numbers, 
the conduction mode of heat transfer is dominant. 

For large values of Ra, the interface does not behave in a 
conduction-like manner, except for very small times. Very 
soon convection takes over, with melting nearly ceasing to oc
cur at the bottom and intensifying at the top of the melt layer. 
This behavior is readily explained by the fact that the top is, 
due to gravity, a high-temperature zone, whereas, at the bot
tom, temperatures very close to T* prevail. 

Slightly different trends are predicted by the numerical 
analysis reported in Sparrow et al. (1977). For low Rayleigh 
numbers and dimensionless times larger than about 0.1, the 

Fig. 3 Timewise variation of the molten mass for various Rayleigh 
numbers 
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Fig. 4 Steady-state Nusselt number at the cylinder as a function of the 
Rayleigh number 

mild interface slope predicted was not observed in the ex
periments. In addition, for high Rayleigh numbers, it seems 
that the melting rate predicted for the bottom region of the 
melt layer is somewhat larger than the ones measured during 
the present work. 

Molten Mass. Figure 3 illustrates the dependence of the 
dimensionless molten mass on time, for different values of the 
Rayleigh number. It can be observed that, for small times, a 
reasonable agreement with the conduction model (M=R* - 1, 
the dashed curve in Fig. 3) is obtained. As expected, it is 
observed that the experimental data for low Rayleigh numbers 
follow the conduction model for quite large values of T. It is 
also noted that departure from the dashed curve occurs earlier 
for higher Rayleigh numbers. 

For larger times, however, the molten mass increases lin
early with time, at a rate that also increases with the Rayleigh 
number. This linear behavior can be explained based on the 
fact that, after there is enough space between the cylinder wall 
and the solid-liquid interface, boundary layer regimes are at
tained near each of the abovementioned surfaces. Therefore, 
radial conduction is eliminated, since a nearly uniform 
temperature at the core of the melt layer is attained. For this 
reason the melt layer thickness becomes unimportant. 

Spatially Averaged Nusselt Number at the Cylinder. From 
the foregoing discussion on Fig. 3 and recalling that the 
average Nusselt number is evaluated from equation (1), it is 
readily seen that, for large times, Nu becomes independent of 
time. This behavior was also observed in Kemink and Sparrow 
(1981), where a boundary condition of timewise constant wall 
heat flux was studied. It was found there that, for large times, 
the cylinder wall temperature tends to a constant value and so 
does the average heat transfer coefficient. In the present work, 
a constant-wall-temperature boundary condition is imposed, 
and hence, as soon as conduction effects become negligible, 
the average heat transfer coefficient ceases to vary. 

In Sparrow et al. (1977), however, the Nusselt number 
presented behaves in a somewhat different manner from that 
described above. This is probably due to the simplifying 
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Table 1 The constant C of Nu = C Ra" as a function of Ur, 

L / r C R e f e r e n c e 
w 

0 0.23*1 Okada 098*0 

10 0.255 Present paper 

20 0.393 Kemink and 

Sparrow (198l) 

assumptions made in the governing equations to obtain the 
analytical solution. As mentioned before, only moderate 
agreements between experimental and analytical results were 
obtained by other researchers, and the present situation seems 
to be no exception. 

In Fig. 4, the steady-state Nusselt number is plotted against 
the Rayleigh number. A least-squares line is also shown in the 
figure, and is represented by 

Nu = 0.255 Ra0-269 (4) 

For Ra = 7 x l 0 7 , the above equation agrees within about 5 
percent with the prediction of Sparrow et al. (1977). 

It is worth noting that the exponent of Ra in equation (4) is 
in excellent agreement with the ones found in Kemink and 
Sparrow (1981) and in Okada (1984) for phase-change 
problems with different aspect ratios L/rw. The coefficients 
found in these references, however, differ from 0.255, as il
lustrated in Table 1. Choosing an interpolating function of the 
power-law type for the values displayed in Table 1, the follow
ing expression may be written 

Nu = (0.234 + 2.52 x 10-5(L/rll,)
2-92)Raa269 (5) 

It is important to emphasize that the above equation was ob
tained for L/rw < 20, and, even in this range, more data points 
are needed to validate the assumed power-law dependence of 
Nu on L/rw. Nevertheless, equation (5) may be useful as a first 
attempt to predict such dependence. 

In general, the average Nusselt number may be evaluated by 
equation (3) for early times, when conduction dominates, and 
by equation (4) after the convection regime is established. A 
simple criterion to estimate the critical time when equation (3) 
ceases to be valid, giving place to equation (4), can be 
developed if the time period when conduction and convection 
are of the same order of magnitude is neglected. In this case, 
the critical time is easily obtained by equating the two expres
sions for the Nusselt number in equations (3) and (4). The 
result is 

TC = 0.606(exp(39.22 Ra"0-2 6 9)- l)2 0 6 8 (6) 

It can be seen from equation (6) that TC decreases with the 
Rayleigh number, and it tends to infinity as Ra-»0 (pure 
conduction). 

As an attempt to evaluate TC for other values of L/rw, the 
constant 39.22 in the above equation may be substituted for by 
(L//-J/(0.234 + 2 .52xl0" 5 (L/rJ 2 - 9 2 ) . 

Final Remarks 

Experiments were performed to study melting of a solid 
around a vertical cylinder embedded in it. The solid phase-
change material is initially at its fusion temperature, and dur

ing the melting process, the cylinder is maintained at a 
uniform temperature that exceeds the melting point. 

Inspection of the solid-liquid interface shapes showed that 
conduction heat transfer prevails initially, and the time at 
which natural convection becomes of importance is a function 
of the Rayleigh number. For high values of Ra, very soon con
vection takes over, and melting occurs unevenly along the z 
coordinate. At the bottom of the melt layer, where colder 
liquid tends to accumulate, very little melting occurs. The op
posite is observed at the top, where the hot liquid provides 
plenty of energy for phase change. 

A simple pure-conduction analysis predicts satisfactorily the 
time dependence of the molten mass for early times and low 
Rayleigh numbers. For larger times and high values of Ra, a 
linear increase is observed. 

The average Nusselt number can be evaluated from results 
of pure-conduction analysis, provided convection is absent, 
i.e., early times or low Rayleigh numbers. After the onset of 
convection, the average Nusselt number ceases to depend on 
time. A correlation is presented to allow the evaluation of this 
steady-state Nusselt number as a function of the Rayleigh 
number and of the ratio L/rw. 

A simple criterion to estimate the limit of validity of the 
aforementioned conduction analysis is discussed, and an ex
pression to evaluate the critical time of change in heat transfer 
mode is presented. 
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A Study of Ice-Formation 
Phenomena on Freezing of 
Flowing Water in a Pipe 

Ice-formation phenomena in a water pipe whose wall is kept at a uniform 
temperature lower than the freezing temperature of water are examined under the 
conditions of an unstable ice-water interface. The onset conditions for a step or 
smooth change in ice thickness occurring with flow transition from laminar to tur
bulent are found to be correlated with ice thickness at the contraction region of the 
ice band and are expressed as a function of a pipe Reynolds number ReD, and a 
cooling temperature ratio 6. It is shown that the transient freezing process depends 
strongly on flow as well as temperature conditions and that the typical ice shapes at 
steady-state conditions can be classified on a d-ReD coordinate system. 

Introduction 

Ice formation in water pipe system, is a basic engineering 
problem. It introduces many practical problems such as 
pressure drop, diminution of flow rate and, sometimes, 
breakage of the pipe as a result of flow blockage by ice. The 
problem of freezing of flowing water involves interactions 
among the flow, the shape of the ice, and the heat transfer at 
the ice-water interface. The interactions result in an instability 
of the interface. Under the conditions which produce thicker 
ice layers, the interface is unstable and the ice thickness is eas
ily affected by a disturbance of flow as well as temperature 
conditions (Gilpin et al., 1980). In this case it has been 
reported that an ice-band structure, which shows a flow 
passage with a periodic variation in cross section along the 
length of pipe, is produced and that a high value of friction 
factor is brought due to a large-scale roughness caused by the 
undulation of ice surface (Gilpin, 1981). In the previous 
papers (Hirata and Ishihara, 1985; Hirata, 1986), the ice-band 
structure and the heat transfer coefficient at the ice-water in
terface were investigated and the freeze-off conditions of the 
water pipe system were successively revealed. It has also been 
found that some typical ice shapes are produced depending on 
experimental conditions: They are the patterns of smooth or 
step change in ice thickness occurring with flow transition 
from laminar to turbulent (Hirata et al., 1979; Seki et al., 
1984), two-dimensional ice-band structure, three-dimensional 
ripples, and freeze-off state. 

In the present study, experiments were carried out to ex
amine the freezing phenomena in water pipes and to in
vestigate the correlation between the typical ice shapes and the 
experimental conditions, particularly for the cases in which 
the ice layer is thick and the ice-water interface is unstable. 
Onset conditions for the step transition are also discussed. 

Experimental Apparatus and Procedure 

The experimental apparatus consisted of a test section, a 
refrigeration unit, and two circulation sytems of water and 
coolant as shown in Fig. 1. The circulation pipes of water and 
coolant, whose temperatures were controlled by PID-
controlled heaters installed in each reservoir tank, were 
covered with insulation materials to decrease heat flow from 
the surroundings. The test section consisted of two tubes in the 
vertical position; the inner one was a copper tube with 

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division August 19, 
1986. 

Flow meter 
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Thermostatically 
controlled heater 
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Brine tank 
Refrigeration 
Pump 

Fig. 1 Schematic illustration of experimental apparatus 

D=19.9 mm (or 25.4 mm) i.d., L = 697 mm; the outer one was 
a 36-mm-i.d. steel tube. The test section was installed with 
flange joints so that the ice in the pipe could easily be taken 
out for observation and measurement. The water was pumped 
through the copper tube and the coolant was circulated be
tween the two tubes. The coolant was circulated at high veloc
ity through the annulus between the two tubes to produce 
uniform wall temperature. The flow direction of water was in 
the upward vertical direction. 

In order to obtain uniform velocity and uniform 
temperature flow at the entrance of the test section, a calming 
section and a contraction section (flow area ratio 16:1) were 
installed. It was ascertained that the Nusselt number data at 
the contraction region of the ice layer obtained in this experi
ment coincides well with Gilpin's (1979) data, which were 
taken under uniform velocity as well as uniform temperature 
profiles at the entrance of pipe. It was, therefore, deduced 
from that result that the velocity as well as the temperature 
profiles in this experiment were sufficiently uniform. 

The wall temperature of the copper pipe TK, was evaluated 
from three thermocouples located along the length of pipe. A 
small temperature difference among the three thermocouples 
was detected as a result of formation of a step transition pat
tern. The maximum temperature ratio among the three ther
mocouples was 0.92, for example, for Re^ = 9500 and 0 = 4.1. 
The water temperature in the pipe Ta, was estimated from the 
mean value of the inlet and outlet of the test section. 

The change of flow rate during the transient freezing 
process was measured at predetermined time intervals. It was 
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Fig. 4 Ice formation pattern (experimental conditions shown in Fig. 2)

Results and Discussion

shape was made by a visual observation of light reflected from
the ice surface. When a step transition is produced, the ice
thickness shows a stepped change at a separation point as
shown in Fig. 6. This made the distinction between the two
types of transition easy. The measurement of ice shape was
done in the cooled room at temperature about 5-lO o C. The
removed ice layer was cut crosswise at several locations along
its length and the diameter of water flow passage was
measured with slide calipers. This measurement was done
quickly so that the amount of melting during the
measurements was negligible.

The experimental ranges covered for the two sets of test sec
tion were 0.4::;; (j::;; 11.7, where (j is the cooling temperature
ratio; 3.7xI03::;;Ren::;;3.0xI04 for D=I9.9 m and
8.0 X 102

::;; Ren ::;;2.5 x 104 for D= 25.4 mm, where Ren is the
pipe Reynolds number.

Freezing Phenomena for Thicker Ice Layers. Ice
formation phenomena during transient freezing processes de
pend on Reynolds number as well as temperature conditions.
In order to examine the ice-formation phenomena with an
unstable ice-water interface, a thicker ice layer was formed

Steady-state
ice-band

Freeze-off

l'-------'--'-----'----'--L-'--L-'-'------'---'--L-'

103

+

10

assumed that a steady-state condition was attained when all
temperature readings remained constant for more than 2. hr.
After a steady-state condition was reached, the water and the
brine in the piping system were drained and the test section
was removed from the piping system. In order to remove the
ice layer frozen to the pipe wall, the copper pipe was heated
quickly by running tap water between the two tubes.

The distinction between a smooth and a step transition in ice

Rep/O

Fig. 3 Experimental conditions compared to onset of freeze·off (ex·
perimental conditions shown in Fig. 2)

____ Nomenclature

B
d

Nud,x
NUn,max

diameter ratio = diD
minimum diameter at contraction region of
ice band
diameter of flow passage at x<Lo
inside diameter of pipe
nondimensional acceleration parameter
KIStd
length of pipe
distance between the locations of pipe inlet
and step transition
Nusselt number at contraction region =
hdlAw

local Nusselt number at x<Lo = hdxlAw

maximum Nusselt number at reattachment
point = hmaxDIAw
total pressure drop between the inlet and
outlet of pipe (in this experiment Po is
equal to total pressure at inlet of pipe when
the valve at pipe outlet is shut)
Reynolds numbers = vdll', VDIP
Reynolds number at which ice formation is
initiated

ReD

v, V

x
Z*

(j

I'

Reynolds number transformed from Rep,
equation (10)
modified Reynolds number defined by
D(2Pol p)O.5 II'
Stanton number = NUdl(RedPr)
time
temperatures of freezing, pipe wall, and
water
mean velocities of water at contraction
region, and in pipe without ice
distance from pipe inlet
nondimensional distance from pipe inlet
4Lo/(DRenPr)
cooling temperature ratio =
(Tf - Tw)/(T00 - Tf )
thermal conductivities of ice and water
thermal conductivity ratio = A/A w
kinematic viscosity of water
friction-factor coefficient in piping system
density of water
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under several conditions of ReD and cooling temperature
ratio, 0 == (TJ - Tw)/(T00 - TJ). A phenomenological relevance
between the variation of flow rate with ice growth and the
final ice shape (in a steady-state or freeze-off condition) was
investigated. Figures 2, 3, and 4 are a series of representations
of the experimental results for the corresponding ReD-O con
ditions, respectively. Figure 2 gives a variation of flow rate
with ice growth, where ReD,o is the Reynolds number at which
ice formation is initiated, Figure 2(a) shows alternations of a
decrease and increase in flow rate until a steady-state condi
tion is reached, while Figs. 2(b-e) show a stoppage of flow
caused by freeze-off. In Fig. 3 the experimental conditions are
compared to the onset of freeze-off conditions, where Rep is a
modified Reynolds number defined by the total pressure drop
between the inlet and outlet of pipe (Hirata and Ishihara,
1985). In Fig. 3 the left-hand side of the solid line is a freeze
off regime, while the right-hand side is a steady-state ice-band
regime. Figures 4(a-e) are photographs of the final ice shapes
obtained for the corresponding ReD-O conditions; the water
flow in the photographs is from left to right. In Figs. 4(b-e)
the flow passages are shown as light-colored areas due to rapid
freezing after a flow blockage.

The transient freezing processes shown in Figs. 2, 3, and 4
can be explained from the correlations between the variations
of flow rate and the final ice shapes. Figure 4(a) shows the ice
band structure in a steady-state condition. An insight into the
behavior of Fig. 2(a) implies that the initial decrease of ReD
during 1==0-1.5 hr is due to an increase of the friction factor
with ice growth throughout the inner surface of pipe. The
following increase at 1== 1.5-3 hr is caused by an abrupt expan
sion of the diameter of the flow passage at which the step tran
sition of ice shape took place. The next decrease at 1== 3 hr and
increase at 1== 3.6 hr are caused by further growth of ice
thickness downstream of the step transition and by the occur
rence of a new step transition, respectively. In Fig. 4(a) the ex
istence of two ice bands (the one very close to the exit of the
test section should be disregarded since the effect of the un
cooled region downstream of the exit on the ice shape is ex
pected) coincides with the result of Fig. 2(a).

The transient process shown in Fig. 4(b) is, in principle, the
same as that of Fig. 4(a). In this instance the experimental con
ditions are very close to the onset of freeze-off, as shown in
Fig. 3. Therefore, the ice layer is comparatively thicker than
that of Fig. 4(a). The development of the second ice band (the
one near the exit) brings about an increased pressure drop and
finally the freeze-off is reached. It should be noted that the
results of Figs. 4(a, b) are the cases in which the ice band is
produced one after another from the upstream location along
the pipe.

The freezing processes of Figs. 4(e, d) are different from
those of Fig. 4(a, b). In these cases, the ReD monotonously
decreases with time until the freeze-off occurs, as can be seen
in Figs. 2(e, d). An obvious correlation between the variation
of Re[) and the occurrence of the ice band cannot be observed.
Since the experimental conditions of Figs. 4(e, d) are in the
freeze-off regime as shown in Fig. 3, the ice growth is rapid
and the ice bands are produced at nearly the same time
throughout the pipe length (Gilpin, 1979).

Figure 4(e) shows the ice shape under the most rapid condi
tions of freeze-off among the present experiments. As the ice
~rowth is very rapid, the ice-water interface is kept stable dur
mg the time of freezing and the ice-band structure does not
form.

Figures 5(a, b) are photographs for comparatively large
~alues of ReD and O. In Fig. 5(a) it is shown that the spacing of
Ice bands becomes shorter near the exit of the test section.
Under more unstable conditions such as in Fig. 5(b), a very
short spacing is observed throughout the pipe length. In these
cases it can be deduced from the temperature variation of pipe

JOurnal of Heat Transfer
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(b)

Fig. 5 Ice formation pattern at higher Reynolds numbers: (a)
ReD =17,800,0 =11.0; (b) ReD =16,700, 0=17.7
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wall that the short-spacing ice bands cannot reach steady-state
conditions, that is the migration does not stop. This means
that an appearance and dissipation of ice bands occurs in the
pipe. The formation process of these short-spacing ice bands is
apparently different from those of Figs. 4(a-d). It has been
reported by Hirata and Ishihara (1985) that a three
dimensional ripple structure is obtained at high Reynolds
numbers with large turbulence. It can be considered that the
ice shapes in Figs. 5(a, b) are also affected by a large tur
bulence of flow. The mechanism of that phenomenon,
however, has not been fully investigated. Although three
dimensional ripples could not be obtained in the present ex
perimental range, it can be presumed that the experimental
conditions of Figs. 5(a, b) are close to the conditions which
produce three-dimensional ripples.

Onset Conditions of Step Transition. An ice layer formed
inside a water pipe, in general, increases in thickness along the
length of pipe regardless of flow conditions (laminar or tur
bulent) at the entrance. The flow, therefore, undergoes an ac
celeration due to the decrease of diameter of flow passage in
the flow direction. When the flow is laminar at the entrance,
the Reynolds number of flow in the downstream is increased
by the acceleration and the flow makes a transition to tur
bulent. When the flow is turbulent at the entrance, the flow is
somewhat laminarized by the acceleration. As the heat
transfer coefficient in the region of laminarized flow is smaller
than that in a turbulent one, the local ice thickness in the
laminarized region becomes larger. This brings about higher
acceleration of the flow. The laminarization of the flow is,
thus, promoted. In the downstream region, the Reynolds
number of the flow is increased by the acceleration and the
flow will make a transition to turbulent again. When the flow
is turbulent at the entrance, the laminarization of flow has a
significant role in order to make a flow transition in the
downstream.

Because the heat transfer coefficient in a turbulent flow is
larger than that in a laminar one, the local ice thickness in the
turbulent region becomes smaller. At the transition region,
therefore, the flow passage gradually expands in the flow
direction, as shown in Fig. 6 by a dashed line. In a steady-state
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condition, this is called a smooth transition and is obtained for 
the case in which the ice layer is thin. 

The expansion of the flow passage in the transition region 
generates an adverse pressure gradient which augments the 
amplification rate of turbulence in this region. If the rate of 
decrease of ice layer thickness in the transition region becomes 
sufficiently large, a flow separation occurs in this region. A 
rapid transition of flow then occurs. Because of the flow 
separation in the transition region, the flow can change from a 
laminar flow upstream of the separation to a turbulent flow 
downstream of the separation in a very short distance. 
Because turbulence in the separated flow region produces a 
high heat transfer coefficient, a stepped change in ice 
thickness takes place at the separation point. The high heat 
transfer coefficient in the separated flow region melts away 
the rearward face of the stepped ice shape and it moves the 
separation point upstream. When the migration is stopped by 
establishing a heat balance at the ice-water interface, the final 
steady-state ice layer is obtained, as shown in Fig. 6 by a solid 
line. This is called a step transition and is obtained for the case 
in which the ice layer is thick. 

The onset conditions of step transition are derived as 
follows: Let us suppose that the step shape was artificially 
made in the smooth ice surface as illustrated in Fig. 7 and that 
the heat transfer rates on the smooth surface and in the 
separated flow region were described by Nud and NuAmax , 
respectively. When the ice-water interface is unstable, the 
relation Nuj, max > Nud must be satisfied for the step shape to 
continue to exist in the ice surface. On the other hand when 
the interface is stable, the step shape disappears gradually and 
the locus of the reattachment point is shown in Fig. 7 by a 
dashed line. The onset of step transition can, therefore, be 
derived by NuAmax =Nu d . 

A heat balance at the ice-water interface in a steady-state 
condition yields an expression of Nusselt number as follows 
(Hirata and Ishihara, 1985): Assuming that heat flow in the 
axial direction in the ice is comparatively small than that of the 
radial one, we have 

Nurf = -2\*9/lnB (1) 

where X* = X,Alv and B = d/D. In equation (1), X* is the ther
mal conductivity ratio of ice to water and B is a diameter ratio. 
The value of Nurf is, therefore, obtained by measuring the 
diameter d of flow passage at the contraction region, and the 
cooling temperature ratio 6. Moretti and Kays (1965) in
vestigated flow laminarization on a flat plate and suggested 
that the laminarization factor can be represented in terms of 
K/St, where K is an acceleration parameter defined by equa
tion (3) and St is the Stanton number. Hirata (1987) extended 
their result to a pipe flow and an examination of the effect of 
K/Std revealed that Nud was proportional to (K/Std)~

0-2 and 
was represented by (see the appendix) 

Nurf = 0.8/(Z*Ar*0-4)0-5 for 0.008 < ^ * < 0.3 (2) 

where Z* = 4Z,0/(DRe£)Pr) and K* is a nondimensional ac
celeration parameter ( = K/Std) derived as follows: The ac
celeration parameter is defined by 

K=-
dva 

dx 
(3) 

Integrating equation (3) for x=0~L0 and voa = V~v on the 
assumption that K is constant with respect to x and dividing K 
by Std, we have 

Pr {\-B2)\nB D 
(4) K*=--

2X* B eu 
On the other hand, it has been reported in the study of an 

ice layer grown on a cold flat plate in a water stream (Hirata et 
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al., 1979) that the maximum Nusselt number in the reattached 
region is well arranged by a correlation for separated flow 
associated with a rearward facing step on a flat plate. In the 
present pipe-flow study the value of Nu£,]inax was approx
imated by the result for an abrupt circular-channel expansion 
(Zemanick and Dougall, 1970) 

NuAmax = 0.2Rey3 (5) 

where Rerf is an upstream Reynolds number of the circular 
channel. It should be mentioned that Red is equivalent to the 
value at the contraction region in this study. Substituting 
equations (1) and (4) into equation (2), we have a representa
tion of ice shape at the contraction region 

5°-2(-lnfi)0-8 Re?j5 

( £ „ / £ ) " =0.168 ( ; _ j B 2 ) 0 j - ^ - (6) 

where Pr=13 and X* = 3.88 were used. According to the 
abovementioned discussions a correlation for the onset of a 
step transition can be obtained by equating equations (2) and 
(5) 

{L0/D)°-6 B0-9n(-\nB)0™ , An 
0 = o - 6 5 — , . „ „ „ ; — ( R e D e 2 y ^ (7) 

ReD00-4 ' ( 1 - 5 2 ) 0 4 

Eliminating {LQ/D) from equations (6) and (7), the onset con
dition is derived as 

( - In B)0A29 

g = ° - 2 0 8 ao.286 ( R e ^ 2 > 2 / ? ( 8 ) 

For a given value of B, the onset condition can be represented 
by a relationship between Re^, and 6. 

In Fig. 8 the abscissa is the nondimensional parameter on 
the right-hand side of equation (8). The data were taken under 
steady-state conditions. The solid and open circles represent 
step and smooth transitions, respectively. It is shown that a 
step transition is observed for thicker ice layer (smaller value 
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Fig. 11 Summary of different freezing phenomena on fl-ReD coor
dinate system 

to the onset values, an initially smooth transition would 
change into a step pattern caused by a small disturbance of 
flow as well as by temperature conditions. Once the ice shape 
has taken a step transition, it cannot readily return to a 
smooth one, even if the experimental conditions are 
recovered. This is due to a large change in heat transfer 
characteristics in a separated flow region. Under the ex
perimental conditions close to the onset values, the ice layer, 
therefore, tends to be a step transition. 

Summary of Freezing Phenomena. In Fig. 11 the typical 
ice shapes are classified on a 9-ReD coordinate system. The 
solid line indicates the onset of step transition and the dashed 
line, the onset of three-dimensional ripples supposed by 
previous observers (Hirata and Ishihara, 1985). The chain line 
represents the freeze-off conditions for the friction-factor 
coefficient £ = 0 given by Hirata and Ishihara (1985), where 
the onset conditions are prescribed by a modified Reynolds 
number, Rep = D(2P0/p)°-5/v. The Rep can be transformed in
to an equivalent pipe Reynolds number ReJ as follows: 

B2 

Ret -Re„ (10) 
[l + n(l-B2)2]0S 

where n is the number of ice bands in the pipe. In Fig. 11 the 
values of Re|, are used to represent the onset of freeze-off con
ditions. It should be noted that the freeze-off conditions are, 
in principle, described by Rep, so the value of Re|, cannot be 
compared directly with that of Refl. 

As to the general nature of the freezing phenomena, it can 
be noted that a thinner ice layer produces a smooth transition 
and, with increasing ice thickness, a step transition (two-
dimensional ice bands) or freeze-off occurs. A three-
dimensional pattern is also observed for larger values of Re^, 
and 6. 

of B) and a smooth one, for the thinner layer. As for study of 
a flat plate, it has been reported that the transition pattern can 
be described by a parameter which indicates a degree of ice 
thickness (Hirata et al., 1979). In the present pipe experiment 
a close connection between the ice thickness and the transition 
pattern was also obtained as shown in Fig. 8. It can be read 
from Fig. 8 that the onset value for the step transition is about 
5 = 0.8. 

Figure 9 gives the map of transition pattern on an ReD-K 
coordinate system obtained under steady-state conditions. 
Moretti and Kays (1965) suggested that a value of 
K=3.3xlO~6 was sufficient to relaminarize a turbulent flow. 
In Fig. 9 the effect of K on the transition pattern is obvious for 
ReD>2300. It is shown that a smooth transition occurs for 
AT<5xl0~6 and a step transition, for K>%y.\Q-6. These 
results account for the consideration that a step transition 
results from a flow transition from laminar to turbulent flow. 
For Ref l<2300 all the experimental data shown in Fig. 9 in
dicate a step transition. For low-Reynolds-number flow, a 
higher acceleration with a thicker ice layer is required to reach 
the transition Reynolds number. The ice thickness at the con
traction region, therefore, becomes larger and a step transition 
is likely to occur. This is the reason why experimental data of 
smooth transition cannot be obtained for ReD <2300. 

Figure 10 gives the results for the onset of step transition 
under steady-state conditions. Introducing the onset value 
B = 0.8 into equation (8), we finally have 

6 = 0.111 (ReDd2)2/1 (9) 

Equation (9) is shown in Fig. 10 by a solid line. The upper part 
of the solid line is the step transition regime and the lower 
Part, the smooth regime. It is noticed that some experimental 
data below the solid line indicate a step transition, contrary to 
expectations. When the experimental conditions are very close 

Conclusions 

From the present experimental studies concerning with 
freezing of water flowing in a pipe, the following conclusions 
may be drawn: 

1 The formation of an ice-band structure is caused by a 
flow transition from laminar to turbulent flow and the tran
sient freezing process is strongly dependent on flow as well as 
on temperature conditions. At higher Reynolds numbers, a 
large flow disturbance affects the transient freezing process 
and a very short spacing of ice bands is produced. 

2 Equation (9) represents the onset conditions that divide 
a smooth transition from a step transition. These conditions 
are strongly affected by the thickness of the ice layer. 

3 The typical ice shapes for the freezing of water flowing 
in a pipe are classified into the patterns of smooth or step tran
sition, two- or three-dimensional ice band, and freeze-shut. 
These phenomena can be summarized on a 6-ReD coordinate 
system as shown in Fig. 11. 
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A P P E N D I X 

Equation (2) was obtained as follows (Hirata, 1987): As to 
the effect of flow laminarization on Nud, it is necessary to ex
amine the local heat transfer coefficient for x < L0, where L0 is 
the distance from the pipe inlet to the location of the step tran
sition. In Fig. 12 the local Nusselt numbers Nurfx for x<L0 

are shown. It is seen that the value of Nurfx is approximately 
proportional to (ReDD/x)0S. This relationship can be rewrit
ten as follows by using x as a reference length: 

hx 
- = const I 

Vx\< 
V / 

D 
01) 

K v " J dx 
It is realized that the formula of equation (11) is the same as 
that for laminar heat transfer on a flate plate. This implies 
that the heat transfer rate in the region of accelerated flow for 
x<L0 is controlled by a laminar boundary layer resistance, 
which coincides with the result by Gilpin (1979). 

Moretti and Kays (1965) examined a flow laminarization on 
a flat plate and suggested that the laminarization factor can be 
represented in terms of K/St. Their result was extended to pipe 
flow, and an examination of the effect of K/Std (=K*) on 
Nud revealed that Nud was proportional to K*~0-2. Based on 
the results obtained, the value of Nud at x = L0 is plotted 
against Z*K*0A in Fig. 13. It is shown that Gilpin's (1979) data 
also correlate well and that the experimental relationship of 
the heat transfer coefficient at x = L0 can be represented by 

Nurf = 0.8/(Z*Jfr*
0-4)-0-5 (12) 

where the applicable range of equation (12) is 0.008 < 
A-*<0.3. 
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Melting Powder Particles in a 
Low-Pressure Plasma Jet 
A numerical model has been developed to predict the temperature history of metal 
particles injected in a low-pressure (supersonic) d-c plasma jet. The temperature 
and velocity fields of the plasma jet are predicted by solving the parabolized com
pressible Navier-Stokes equations using a spatial marching scheme. Particle trajec
tories and heat transfer characteristics are calculated using the predicted plasma jet 
temperature and velocity fields. Correction factors have been introduced to take in
to account the noncontinuum effects encountered in the low-pressure environment. 
The plasma jet profiles as well as the particle/plasma interactions under different jet 
pressure ratios (from underexpanded to overexpanded cases) have been 
investigated. 

Introduction 
In the plasma spraying process a d-c plasma jet is used as a 

heat source to melt and accelerate powder particles, which 
subsequently impinge and solidify on a given substrate. Dur
ing the low-pressure plasma deposition (LPPD) process, the 
plasma jet is expanded into a low-pressure environment (40-80 
torr) which results in high (supersonic) plasma jet velocities 
with Mach numbers ranging from 2 to 3. Previous efforts to 
predict heat transfer and fluid flow on atmospheric-pressure 
plasma spraying were based on an incompressible flow for
mulation employing turbulence models (Correa, 1983; 
IvIcKelliget et al., 1982; El-Kaddah et al., 1984). However, 
these calculations are limited to the subsonic flow regime. 
Compressibility effects and viscous heat dissipation were 
neglected. In the LPPD process, the plasma jet is operated in 
the supersonic flow regime; therefore, the compressibility ef
fects and viscous heat dissipation should not be considered to 
be negligible. One of the objectives of this work is to develop a 
jet model capable of predicting supersonic plasma jets 
operating at off-design (under or overexpanded) conditions. 

Production of high-quality dense deposits requires that a 
large fraction of the injected particles be in a molten state 
when they impact the substrate. An additional objective of 
this work is to understand plasma/particle heat and momen
tum transfer since these phenomena dictate both the particle 
thermal history and trajectory. 

Early computational work in supersonic nozzle flow fields 
(Cosner and Bower, 1977; Pergament et al., 1978; Hoist, 
1977) consisted of patching methods that divided the flow 
field into an inviscid free stream and viscous boundary and 
mixing layers. Each was analyzed independently and coupled 
through appropriate boundary conditions. Later schemes 
(Mikhail, 1979; Hasen, 1982) involved solving time-
dependent, compressible Navier-Stokes equations over the en
tire computational domain. These schemes show a great prom
ise for predicting flows with complex structure, and where the 
viscous effects become prevalent. The above schemes are, 
however, found to be unsuitable for supersonic jet flows ex
iting into a quiescent ambient environment. 

In this study, a numerical model was developed to predict 
the thermal history of particles injected into a low-pressure 
plasma jet. The temperature and velocity profiles of plasma 
jets are predicted by solving the parabolized compressible 
Navier-Stokes equations using a spatial marching scheme. In 
the LPPD process, because of the low-pressure environment 
and supersonic velocity, the mean free path lengths of the 
plasma constituents have been calculated to be on the order of 
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several microns. Thus, noncontinuum effects on heat and 
momentum transfer to the particle should be significant 
(Eckert and Drake, 1972; Chen and Pfender 1983). Previous 
work (Apelian et al., 1984) has shown that the noncontinuum 
interaction between the plasma gas and the injected particles is 
significant for the conditions encountered during LPPD. Cor
rection factors have been introduced to take these effects into 
account and the results show that both heat and momentum 
transfer between the plasma gas and the injected particles are 
significantly reduced. In the particle heating model employed 
here, the latent heat of melting was taken into account by in
troducing apparent enthalpy as a function of the fraction of 
liquid formed which can be derived from equations describing 
equilibrium melting. 

Model Development 

The integrated process model which predicts the 
temperature of the injected powder particles during their flight 
through the plasma jet is based on models describing the 
plasma gas temperature and velocity, the injected particle tra
jectory and the heat transfer between the particles and the 
plasma gas. The arc region and the flow inside the plasma gun 
have not been considered in this study. These models are 
discussed in the following: 

Plasma Jet Model. The following assumptions were made 
when formulating the jet model: 

(i) The plasma is in local thermodynamic equilibrium. This 
assumption is found to be reasonable for electron densities 
above 1015cm~3. However, this assumption may not be valid 
at the periphery of the plasma arc where electron temperatures 
are much higher than the temperatures of other species. 

(ii) The plasma jet is at steady state and possesses cylin
drical symmetry. 

(Hi) The plasma is assumed to be optically thin and radia
tion heat transfer is negligible. 

(iv) Ionization and recombination of ions and electrons 
due to shock formation are negligible. 

(v) The plasma gas is assumed to obey the ideal gas law, 
and the turbulent Prandtl number is assumed to be constant 
(0.9). 

The model considers wave/shock propagation in laminar 
and turbulent regions of the jet, as well as turbulent mixing in 
the (jet) shear layer. In addition, the model should take into 
account the influence of compressibility effects, pressure gra
dients on turbulence, and the interaction of the wave and the 
turbulent mixing layer. The plasma plume (jet) is described by 
formulating jet mixing equations using time-averaged, 

Journal of Heat Transfer NOVEMBER 1987, Vol. 109/971 Copyright © 1987 by ASME
  Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



AXIAL DISTANCE (X / r ) 

Fig. 1 Jet mixing contours for Mach 2 jet into still air (P-JP^, =1.45, 
T;- = 1500K) 

Reynolds decomposed, axisymmetr ic parabol ized 
Navier-Stokes equations. The turbulent viscosity was ob
tained using the compressibility corrected k-e (two equation) 
turbulence model (Launder, 1972). 

The conservation equation for momentum, mass, and en
thalpy were transformed to an x-ip coordinate system yielding 
(Jennions et al., 1977): 

Continuity: 

pur = -
dip 

a7~ 
Streamwise momentum: 

du 

- pvr = -
dip 

dx 

du 1 dp 

pu dx 

Lateral momentum (neglecting viscous terms): 

^ - = — ( p u r ^ ^ ^ 

dv 

dx 

dp_ 

d\P 

(1) 

(2) 

(3) 

Stagnation enthalpy: 

dH _ d 

~dx~~ dif/ \ oH dip . / dip LV o„ , 

•pur 
d^ 

(u2 + v2)/2\] 

Species: 

d<l> d r ,.A ^rff a* i ^ l c 

where 
dip 

(4) 

(5) 

Compressibility is accounted for by making the plasma gas 
density depend on the pressure and temperature through the 
ideal gas state equation 

P = -
(Y-1)P [""T^H (6) y L 2 

A parameter <j> was introduced which ranged between 0 and 1 
and was utilized to describe the extent of mixing, following 
Dash (1985). Argon is the only specie considered in the 
analysis. Essentially, the value of specie </> was used to locate 
the turbulent shear layer (Fig. 1). Following Dash (1985) the 
turbulent shear layer was defined in the region where <j> ranges 
between 0.05 and 0.95. The two-equation (k-e) turbulence 
model was applied in the turbulent jet mixing layer, only. 

The turbulence model used in this study is the basic k-e 
model which has been modified to correct for axisymmetric 
and weak shear flow near the centerline (Launder et al., 1972) 
and the viscosity formulation used takes into account com
pressibility of the jet (Dash et al., 1975). The latter described 
the observed reduced mixing rate in supersonic jets. 

The formulated turbulent kinetic energy (k) and its dissipa
tion (e) equations are 

dk d _ , ix. dk \ 

dx dip a, dip / 9iP aK dip 

~dx~lhp 

where P is the turbulent production term 

•0 

('~H)-F<C^ -C2e) 

P = fx,pur ( 
duy 

0) 

(8) 

(9) 

The turbulent viscosity /t, is determined from the local values 
of k and e through the relation 

Mr 
k2 

••C„(f)p-j- (10) 

where o>=1.0; a, = 1.3; Cj = 1.43; C2 = 1.92-0.667/; 
CM = 0.09-0.4/. 

The axisymmetric correction parameter/is set equal to zero 
in the shear layer region (before the mixing zone reaches the 
axis), and is defined in the downstream region as 

/\duc I duc\l
0-2 

\Vd~x\~dx)\ /= 
2{uc - ue) 

where re is the width of the full mixing layer, uc is the jet 
centerline velocity, and ue is the external stream velocity. 

To account further for the reduced mixing rate observed at 
higher Mach number jet mixing, a heuristic compressibility 
corrected viscosity is used 

k2 

^ = C(MT)C / i P— (11) 
e 

where C(MT) is the correction factor and MT is the 

a 

cD c 
cP 

A 
h 

H 

k 
K 
L 
P 
P 

Qo 

n u i u c u c i H i u i c 

= accommodation coefficient 
= drag coefficient 
= speed of sound 
= specific heat 
= fraction of liquid 
= heat transfer coefficient 
= enthalpy of the gas or powder 

particle 
= turbulent kinetic energy 
= thermal conductivity 
= latent heat of fusion 
= turbulence production term 
= pressure 
= heat flux 

r -
T = 
t = 

S --
u -
V -

X = 

7 = 
e = 

/* = 
P = 
a -

<t> = 
iP --

= radial distance from axis 
= temperature 
= time 
= source term 
= axial velocity 
= radial velocity 
= axial distance 
= ratio of specific heats 
= turbulent dissipation rate 
= viscosity 
= density 
= Prandtl number 
= species 
= stream function 

Subscripts 
c = continuum 
j = jet exit 

eff = effective physical property 
/ = laminar state 

liq = liquidus 
mp = melting point 

p = particle surface 
r = recovery 

ref = reference state 
s = stagnation condition 

sol = solidus 
t = turbulent state 

oo = chamber condition 
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characteristic Mach number of turbulence (M7 = k^5
ax /c), 

where kmaK is the maximum value of turbulent kinetic energy k 
at each station, and c is the local sound speed at the grid point 
where k is maximum. The functional form of C(MT) given by 
Dash et al. (1975) was determined by matching calculations to 
observed spreading rate for isoenergetic, supersonic shear 
layers with one stream stationary. It should be noted that the 
turbulence modeling is only applied in the mixed shear layer, 
which is defined by the position of calculated species ratio. 

A one-dimensional isentropic flow solution was calculated 
to obtain the mean Mach number, pressure, and the jet en
thalpy at the nozzle exit based on experimentally determined 
operating parameters, and the critical area ratio of the nozzle 
(Wei, 1986). Top hat type initial conditions were used for the 
flow and the temperature. The initial conditions for k and e 
are as given in Launder et al. (1977). 

When performing the calculation for a jet exhausting into a 
quiescent stream, the imposition of the ambient pressure level 
along the jet edge and use of the boundary condition 
u L t edge = uco are good approximations to the problem. For 
the quiescent edge chamber calculation, however, the condi
tion «„ = 0 should not be simulated numerically, since this im
plies vertical angles for the entrained streamline which is 
physically unrealistic. Instead a nominal value u„/u \iel 

edge = 0.001 was used to approximate the quiescent state. 

The solut ion procedure employed a s tandard 
Patankar-Spalding parabolic marching integration to solve 
the equations for the streamwise velocity, total enthalpy, 
species, and turbulence variables. A pressure correction equa
tion was formulated based on the compatibility of the momen
tum and continuity equations (Jennions et al., 1977). The 
pressure correction equation is solved to give the pressure 
variation along the cross-stream direction and to correct the 
flow field to satisfy continuity. Axial step size was varied in 
proportion to the streamline curvature. Fifty cross-stream 
grids were used for all calculations reported. Details of the 
solution procedures can be found in the references (Jennion et 
al., 1977; Wei, 1986). The exit plane of the plasma gun was 
considered as the starting plane for the solution domain. Ther-
mophysical properties of argon were obtained from Vargaftik 
(1975). 

Momentum and Heat Transfer Between Plasma Gas and 
Particles. In the LPPD process, due to the low-pressure en
vironment and supersonic plasma velocity, the noncontinuum 
effects on the heat and momentum transfer to the particles 
become significant and should be taken into account. Single 
particle trajectories were calculated by solving a simplified 
form of the Basset-Boussinesq-Oseen equation. The equa
tions were derived assuming that the only forces which in
fluence the trajectory of the particles are the drag and gravity 
forces. 

A detailed analysis of the various terms in the particle 
momentum and energy equations has been given by Lee et al. 
(1985). The Basset force term, the thermophoretic acceleration 
term, and the effects of gravity have been neglected consider
ing the small size of the particles. The particles are assumed to 
be introduced at rest into the center of the jet. The effect of 
the injection gas on the plasma jet has not been considered in 
this analysis. The drag coefficient for the injected particles in 
the supersonic flow regime was calculated using the formula
tion suggested by Vallerani (1976). The drag coefficient for 
particles moving at low Reynolds and Mach numbers was 
calculated using an approximate solution suggested by Phillips 
(1975). 

For particle heat transfer calculations in a plasma gas mov-
lng at high velocity, it is necessary to take into account the 
frictional heating of the plasma gas near the injected par
ticulate body. Thus, the heat flow from the plasma gas to the 

injected particles is given by q = h(Tr- Tp), where Tr is how 
defined as the recovery temperature and is expressed by the 
recovery factor r 

T -T 
1 s 1 p 

Ts is the stagnation temperature of the plasma gas based on 
the relative velocity with respect to the particles. In this work, 
the recovery factor used was obtained from experimental 
results reported by Drake and Backer (1952). An experimental 
correction factor (Sherman, 1983) for heat transfer to bodies 
in subsonic flow in the transitional flow regime has been ex
tended to the supersonic flow regime. A detailed analysis of 
the momentum and heat transfer to particles in jets has 
previously been presented by the authors (Apelian et al., 
1984). An accommodation coefficient of 0.8 was used in this 
study. 

Heat Conduction Within a Particle Undergoing a Phase 
Change. In evaluating heat conduction within the particles, 
the temperature gradient within the particle and the 
temperature-dependent properties of the powder particle are 
considered. The governing differential equations and bound
ary conditions for a material during the various stages of 
melting, i.e., (i) all solid, (if) liquid plus solid, (Hi) all liquid, or 
(iv) evaporating surface, have been considered. In addition, 
the melting model takes into account the fact that during 
melting of alloy particles a mushy region exists where both 
solid and liquid phases are present. An enthalpy method 
developed by Voller and Cross (1979) has been used to take in
to account the mushy region during melting. 

For spherical particles the heating can be described by the 
conduction equation 

dH 1 S T , . 3 H 
\r2Kn (12) 

are functions of The conductivity Kp and density pp 

temperature. 
For a pure material the temperature is related to enthalpy 

via 

dH 
dT~-

T=T„,„ when 

when H< 

cpdT 

r cpdT 

cpdT 

and 

dT--
d(H-L) 

when 
f Tmp 

H-\r ^p - 'ref 

For an alloy the relationship is as follows: 
rsol 

cpdT+L 

dH tTi 
dT= when H< 

c Jr r 
CpdT 

d(H-fLL) 
dT= when cpdT<H< 

Txd 
cpdT+L 

d(H-L) 
dT= when H-\r 

dT+L 

where fL is the liquid fraction present at temperature 
calculated from the alloy phase diagram. 

Results and Discussion 

Jet Model Confirmation. A series of calculations was per
formed for a cold (TsMk = 164 K) Mach 2 jet into still air (hav
ing the same static temperature) at two different static 
pressure ratios (P/P„ = 1.45 and P/Pao=0.75). The calcula-
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Fig. 2 Comparison of predicted and measured static pressure varia
tions along jet axis lor Mach 2 jet (PjlPa =1.45) into still air; 
predicted, measured 

AXIAL DISTANCE (X/r ) 
I 

Fig. 3 Comparison of predicted and measured static pressure varia
tions along jet axis for Mach 2 jet (P;IP„) = 0.75) into still air; 
predicted, measured 

tions simulate the experimental conditions reported by Seiner 
and Norum (1980). Comparisons of the predicted and 
measured stream wise pressure variations along the jet 
centerline for the two static pressure ratios are shown in Figs. 
2 and 3. As can be seen, the predicted and measured pressure 
variations agree very well, indicating that the level of jet mix
ing and the attenuation of the wave intensity due to turbulent 
dissipation are properly modeled. The model was used to 
predict the rate of jet decay, and the results were compared 
with the measured data reported by Eggers (1966). As can be 
seen in Fig. 4, good agreement exists between the experimental 
data and the model up to 30 radii of jet axial distance. 

Supersonic Plasma Jet Predictions. Having confirmed the 
jet model, supersonic plasma profiles describing jet mixing 
were generated for: 

(a) an argon plasma exiting at 
chamber at a reduced pressure of 40 

(b) an argon plasma exiting at 
chamber at a reduced pressure of 65 

(c) an argon plasma exiting at 
chamber at a reduced pressure of 40 

The nozzle exit pressure Pj was 
dimensional isentropic flow model 

Mach 2 velocity into a 
torr (Pj/Px = 1.266); 
Mach 2 velocity into a 
torr ( P / / ^ =0.75); 
Mach 3 velocity into a 
torr (Pj/PQa = 1.37). 
estimated using a one-

and a given nozzle area 
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Fig. 4 Comparison between predicted and measured centerline veloci
ty decay for a Mach 2.2 balanced jet into still air 
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Fig. 5 Predicted degree of jet mixing contours for Mach 2 plasma con
ditions (?;/?„ = 1.226) 
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Fig. 6 Predicted jet mixing contours for Mach 2 plasma conditions 
(P)/P„ = 0.75) 

ratio. The inlet static temperature were taken to be 6130°K 
and 4584°K for the Mach 2 and Mach 3 plasma jets, 
respectively. 

Figure 5 shows the jet mixing contours 4> for a Mach 2 
plasma operating at 40 torr. This is the situation where the jet 
is underexpanded, and one can clearly see the level of mixing 
in the plume. A strong gradient of </> indicates strong mixing. 
Moreover, one notes the deflection of the jet near the exit of 
the gun due to underexpansion of the jet. In contrast, when 
the chamber pressure is at 65 torr (the situation when we have 
an overexpansion of the jet), the results show distinctly dif
ferent jet mixing contours, as shown in Fig. 6. The lack of 
deflection of the jet as it exits in a chamber at a higher pressure 
(65 torr) is of interest in understanding particle/plasma 
interaction. 

Subsequently, plasma jet temperature and velocity profiles 
for different Mach number jets operating at a variety of dif
ferent chamber pressure conditions (different values of 
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Fig. 7 Particle velocity as a function of axial distance for 30 p,m Fe-20 
wt percent Mn particles sprayed using Mach 3 plasma conditions 
(Pj/Pe, = 1.37); and Mach 2 plasma conditions (Py/P^ = 1.226); 
Mach 3, Mach 2 
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Fig. 9 Particle temperature as a function of axial distance for 30 ;im 
Fe-20 wt percent Mn particles sprayed using Mach 2 plasma jet condi
tions (PjlPa = 1.226), and Mach 3 plasma jet conditions (Py/P^ =1.37); 

Mach 2, Mach 3 
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Fig. 8 Particle velocity as a function of axial distance for 30 Pm Fe-20 
wt percent Mn particles sprayed using Mach 2 plasma jet (Pj/P„ = 1.226, 
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Fig. 10 Particle temperature as a function of axial distance for 30 ;im 
Fe-20 wt percent particles sprayed using Mach 2 plasma jet 
(Py/P^ =0.75, and Py/P^ = 1.226) 

Pj/Poc) were generated. The reader is referred to Wei (1986) 
for a detailed discussion and presentation of these results. 

Injected Particle Velocities and Trajectories. It has been 
shown that in LPPD the Knudsen number ranges from 0.5 to 5 
when injecting particles in the size range of 10-50 urn 
(Apelian, 1984). Thus noncontinuum effects on the heat and 
momentum transfer are substantial. The heat fluxes and the 
drag coefficients for injected particles in the transitional flow 
regimes have been reported elsewhere (Apelian, 1984). These 
results suggest that momentum transfer can be reduced by as 
much as 90 percent, and that the heat transfer can be reduced 
by as much as 80 percent when injecting particles in the size 
range of 10-50 fim in LPPD (as compared to continuum flow 
heat and mass transfer to particles). 

Velocities of injected Fe-20 wt. percent Mn particles (30 /zm 
diameter) as a function of the distance along the jet axis are 
shown in Figs. 7 and 8. The particle velocities shown in Fig. 7 
are for Mach 2 and Mach 3 plasmas, both operating in a 40 
torr chamber. It can be seen that momentum transfer occurs 
during the initial stages of flight. In addition, particle 
velocities in the Mach 2 plasma are much lower than in the 
Mach 3 plasma, giving the particles a longer residence time in 
the jet. The sudden change of the particle acceleration is 
caused by the sudden drop of gas velocity after the first shock 
structure. Table 1 gives calculated residence times for different 
plasma conditions. These results agree well with experimental 
data (Frind et al., 1983), which show that particle melting is 
more efficient in Mach 2 plasma due to larger residence times. 

Injected particle velocity is further reduced when the jet is 

Table 1 Comparison of residence times for Fe-20 wt percent Mn par
ticles (30 (im diameter) injected in different plasma jets 

Plasma Condition Jet Pressure Ralio Spray Distance (m) Residence Time (ms) 

Pj/P „ = U 2 6 0.4 

P|/P„ = 0.75 0.4 

Pj/P« 

overexpanded, that is, the jet exits into a chamber which is at a 
higher pressure. This is seen in Fig. 8, which shows particle 
velocities for both underexpanded (Pj/P^ = 1.226 or 40 torr) 
and overexpanded (Pj/P„ =0.75 or 65 torr) jets. 

Injected Particle Temperature and Heat Transfer. Ther
mal histories of Fe-20 wt percent Mn particles (30 urn 
diameter) as a function of distance along the jet axis are shown 
in Figs. 9 and 10. The solidus and liquidus temperatures of the 
particles are 1702 K and 1725 K, respectively. The particle 
temperatures shown in Fig. 9 are for Mach 2 and Mach 3 
plasma jets, both operating at a 40 torr chamber pressure. 
Figure 10 shows the mean particle temperature for two dif
ferent jet pressure ratios (PJ/Pa> = 1.226 or 40 torr and 
Pj/Px = 0.75 or 65 torr). The plateau shown around 1700 K in 
the figures signifies melting of the particles. In Fig. 9 another 
plateau is observed near 1200 K for the Mach 3 condition. This 
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is, however, due to the temperature drop of the gas phase flow 
due to an expansion wave. As can be seen, particle heating is 
more efficient with the Mach 2 gun than with the Mach 3 gun. 
The Mach 2 plasma jet has a lower velocity, a higher enthalpy 
as well as a lower operating power level than the Mach 3 
plasma jet. Powders of 30 /wri size can be melted using the 
Mach 2 gun but are not melted using the Mach 3 gun, as 
shown in Fig. 9. Furthermore, particle heating is more effi
cient with the plasma gun operating in the overexpanded con
dition than the case when the plasma is in the underexpanded 
condition. These results are in agreement with the experimen
tal observations previously reported (Smith, 1985). 

Conclusions 

The comparisons between the predictions and reported data 
for a supersonic jet exiting into a quiescent atmosphere have 
shown that the present model is capable of predicting the flow 
structure of high Mach number jets under moderate off-design 
(i.e., under or expanded) conditions. Furthermore, the strong 
spatial fluctuations in plasma jet properties (i.e., velocity, 
pressure, density, temperature) due to the imperfect expan
sions of the plasma jet have been explored. The present predic
tions of the particle temperature and velocity show close 
agreement with the reported data on the LPPD process 
(Smith, 1985) when noncontinuum effects are incorporated in
to the calculations. In addition, the predicted effective particle 
heating under the overexpanded plasma condition have also 
been reported by Smith (1985). Specifically, efficient melting 
of Rene 80 particles have been observed when a plasma jet 
operated at an increased chamber pressure (i.e., overexpanded 
condition). 

It should be noticed that the present jet flow calculations 
were made using the radially uniform inlet condition, i.e., 
radial gradients for the temperature and velocities have not 
been considered. However, due to the strong interaction be
tween the arc and the gas flow within the nozzle, the arc 
heating of plasma gas is nonuniform. Therefore, presently 
assumed top hat-type inlet conditions need to be investigated 
further. A case of dilute injection has been assumed, thus, 
coupling effects between plasma plume and injected particles 
are not considered. In addition, the contribution of ion-
electron recombination on the total heat transfer (Lee et al., 
1985) has been neglected. 
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Transient Radiative Cooling of a 
Layer Filled With Solidifying Drops 

An analysis is carried out for radiative cooling of a plane layer initially filled with 
liquid drops that solidify and then continue to cool by loss of sensible heat. This is in 
connection with a proposed lightweight radiator system for heat dissipation in 
space. Hot liquid drops would be ejected and then cooled by direct exposure in 
space; they would then pass into a collector for reuse. The cooling analysis contains 
three transient zones. In the first, the drops cool by losing latent heat until the outer
most drops become solid. Then the cooling continues by loss of both latent and sen
sible heat. Finally, all of the drops are solid, and they continue to cool by loss of sen
sible heat. A similarity behavior is eventually achieved in which the transient emit-
tance of the layer depends only on the optical thickness. 

Introduction 

The generation of power for use in space applications re
quires a radiator for dissipation of waste heat. With increasing 
requirements for power generation capacity, the radiator sur
face area can become quite large, involving a large structural 
weight. A potentially light-weight radiator has been proposed 
(Mattick and Hertzberg, 1981) wherein streams of hot liquid 
drops would be passed through space where they would lose 
energy by transient radiative cooling. The cooled streams 
would then arrive at a collector to enable reuse of the coolant. 
Some development work on this type of system is described by 
Presler et al. (1986). This includes techniques for formation of 
droplet streams, and plans for experiments on radiative heat 
transfer performance. System optimization studies are given 
by Taussig and Mattick (1986). The radiative behavior 
depends on the emissive ability of a region filled with many 
parallel streams of drops. A detailed transient analysis of the 
emittance of a layer filled with drops has been given by Siegel 
(1987a-c) using radiative transfer theory. The previous 
analyses have studied the transient loss of only the sensible 
energy of the drops; the drops remain liquid throughout the 
entire cooling process. The present study will consider drops 
that can also solidify, thereby utilizing both their latent and 
sensible energy. 

The transient cooling of layers that absorb, emit, and scat
ter radiation has been studied for the past 30 years, including 
some early work by Gardon (1956, 1958) on the heat treatment 
of glass plates that emit and absorb radiation within their 
volume. It is not reasonable to include a detailed literature 
survey here. A brief review of transient radiative cooling is 
given in the textbook by Siegel and Howell (1981), Chap. 18. 
A review of the early literature is in Viskanta and Bathla 
(1967), who analyzed transient cooling of an absorbing-
emitting layer. A later review by Viskanta and Anderson 
(1975) gives results for transient radiative heating of cold 
plane layers and semi-infinite solids. Some references of in
terest on transient cooling are Bathla and Viskanta (1968) 
which included the effect of incident radiation from the sur
roundings, and Lii and Ozisik (1972) who studied the effect of 
reflecting boundaries on a plane layer. Kubo (1984) analyzed 
conditions with large scattering and small absorption. 

In the preceding references, the radiating layers cooled by 
loss of their sensible energy. For the liquid-drop radiator it 
may be possible to gain some performance advantage by utiliz
ing the latent heat of the drops as well as their sensible energy; 
then each drop can transport more energy to be dissipated. 
During the portion of the cooling process where drops are 
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solidifying across the entire layer thickness, the layer will re
main at uniform temperature. This maintains a higher layer 
emittance as compared with a layer in which the outer portion 
has become cool. Having the drops solidify is helpful in 
limiting evaporation losses; however, melting the drops for 
reuse presents a design problem not present in a fully liquid 
system. 

To consider a case that is not overly complicated, the liquid 
drops are initiated at their solidification temperature. A 
period of transient cooling follows wherein the layer remains 
at uniform temperature while the drops partially solidify. An 
analytical solution is obtained for this period, and it yields the 
distribution across the layer of the liquid fraction at the time 
when the drops at the outer boundaries of the layer become 
completely solid. This liquid distribution serves as the initial 
condition for the next cooling region in which there is a mov
ing boundary that separates the completely solidified outer 
layer at nonuniform temperature from the partially solidified 
inner region that is still at the solidification temperature. After 
solidification is complete, the entire layer continues to cool by 
sensible heat loss. A constant emittance condition is finally 
achieved, as shown by the analysis of Siegel (1986c). 

Analysis 

As described by Presler et al. (1986), a directed, moving 
layer filled with liquid drops can be produced by a drop 
generator. The drops exit from the generator at uniform 
velocity and move through space where they cool by radiative 
transfer. The cooling process is illustrated in Fig. 1 (shown 
with a highly compressed z scale). The present analysis is con
cerned with drops that solidify and then lose sensible heat. To 
consider a situation that is not overly complex, the liquid 
drops are assumed to leave the generator at their solidification 
temperature. Solidification then begins by radiative cooling 
while the layer remains at uniform temperature; the 
temperature uniformity helps maintain a high layer emittance. 
Unless the layer is optically very thin, the radiative cooling is 
more rapid in the outer regions, so that, with increasing 
distance from the generator, a distribution in liquid fraction 
develops across the layer with the smallest liquid fraction at 
the outer boundaries. When the distance z$ in Fig. 1 is 
reached, the drops at x = 0 and D have become solid. For 
larger z values, a temperature distribution begins to develop as 
the region in which the drops have completely solidified loses 
sensible heat. The center portion of the layer, which is still 
partially liquid, remains at the solidification temperature. The 
thickness of the region that is completely solid is xs, and this 
thickness increases with z until the entire layer has become 
solidified. The entire layer then continues to cool by radiative 
loss of sensible energy. 
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Fig. 1 Geometry of solidifying layer filled with drops 

Property variations, with temperature or as a result of phase 
change, are neglected; they can be included later if more 
detailed information is needed for this type of radiator. This 
would include the change in radiative properties when going 
from liquid to solid, if the properties are known. Temperature 
variations within each drop are neglected; this seems 
reasonable for the very small drop sizes to be used in the 
liquid-drop radiator (diameters in the range of 100 to 200 /im). 

Energy Equations. In the partially solidified region, the 
temperature remains uniform at Tj, and the loss of latent heat 
by radiative cooling is governed by the energy equation 

p\u-— =—— (la) 
dz dx 

In the completely solidified region 

dT _ dqr 

dz dx 

It is assumed that temperature variations in the z direction are 

pcsu (lb) 

much more gradual than in the x direction, so that dqr/dz is 
neglected relative to dqr/dx. Since the flow velocity of the 
layer is constant, it is convenient to transform the equations 
by letting T be the cooling time after the droplet streams leave 
the generator. Then T = Z/U, and the energy equations 
transform to 

pX —— =--£- (xs<x<D-
07 OX 

Xs) (2a) 

pcs 

dT 

~d~F dx 
(0<x<xs, D-xs<x<D) (2b) 

The droplets absorb and emit radiation. To reduce the scope 
of the calculations, scattering is not included in the present 
analysis; the effect of scattering on increasing the cooling 
times is shown by Siegel (1987a) for a single-phase system. 
Similar behavior would be expected here. Then the derivative 
in radiative flux is given in dimensionless form (Siegel and 
Howell, 1981) by: 

4^=^(«. *)-4T *v. mo*-w (3) 
This assumes gray radiation, which is reasonable for many 

liquids and solids in the infrared region characteristic of liquid 
droplet radiator temperatures. Nongray calculations can be 
done later, if needed, after specific liquids are chosen. The ab
sorption coefficient in a cloud of equally sized droplets of 
radius Rd is given by a = EaTrRdN, where JVis the number of 
droplets per unit volume. In dimensionless form, equations 
(2a) and (2b) become 

dV 

~3~F 
= - S K 

dT 

IF KD 

1 dCtr 
D 4oTj 3K 

1 dgr 

4oT} 3K 

(4a) 

(4b) 

Since f i s initially unity (at z = 0 in Fig. 1), it is sometimes 

N o m e n c l a t u r e 

a = absorption coefficient of absorbing-emitting 
layer 

cs = specific heat of solidified drops 
D = thickness of absorbing-emitting layer 
E = latent and sensible energy in drop-filled layer 

Ea = efficiency factor for absorption by a droplet 
Es = sensible energy in drop-filled layer 

E2, E3 = exponential integral functions; 

2exp(-x/ft)c?ft E„(x)= j Q / r 

N = number of droplets per unit volume of layer 
q = heat loss per unit area and time from a bound

ary of drop-filled layer 
qr = radiative heat flow per unit area and time 

Rd = radius of spherical drop 
S = Stefan number = cs Tf/\ 
T = absolute temperature; f = T/Tf 

Te = temperature of surrounding environment; 

re = o 
Tj = solidification temperature 

Tm = spatially integrated mean temperature across 
layer at any time during cooling transient; 
Tm = Tm/Tj 

Tr = reference temperature 
ii = uniform flow velocity of layer filled with 

drops 

V = local liquid fraction of drops in drop-filled 
layer = V,/Vd 

Vd = volume of drops per unit volume of layer 
V, = volume of liquid per unit volume of layer 

X* = dummy variable of integration 
x = coordinate across width of layer; X=x/D 

xs = location of moving boundary of all-solid 
region; Xs=xs/D 

Z = coordinate along length of layer in flow 
direction 

Z0, Z\ = locations of beginning and end of moving 
boundary region 

e = emittance of layer 
e,„ = emittance based on instantaneous value of 

Tm\ £m=q/oTi 
K = optical coordinate = ax; KD = optical 

thickness = aD; KS = axs 

K* = dummy variable of integration 
X = latent heat per unit mass of layer filled with 

drops 
p = density of layer filled with drops 

pd = density of droplet material 
a = Stefan-Boltzmann constant 
T = time from start of cooling = z/u 
f = dimensionless time = (4oTj/pcsD)r 

T0, TX = beginning and end of moving boundary 
region; T0=Z0/U, T{ =zi/u 
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more convenient and accurate to utilize the difference 1 - T4 

in the radiative term in equation (3). Then by adding and sub
tracting the integral of E{, equation (3) becomes (the f func
tional notation has been dropped to shorten the expressions) 

— ^ ^ = 4 - P U-t\K*)-\E^\K-K*\)dK* 
4<JT} SK 2 JO 

+ ~[E2(K)+E2(KD-K)]-[l-f\K)] (5a) 

For the region between z0 and Z\ in Fig. 1, the integral in equa
tion (5a) is simplified because 1-7^ = 0 between x=xs and 
p-xs. Then equation (5a) becomes 

AoT} dn 2 Uo n 

+ \"D [l-f4Ml£i(l(-«'Wi'|+-S-l£2W 
JltD~KS

 J 4 

+ E2(KD-K)\-[\-t\K)} (5b) 

In terms of the variable X, equation (5b) has the form 

~ -&) l l ^ C [1 - *wno° x-x-W 

+ f [1 - P(X*)]EI(KD \X-X* \)dX*\ 

+—{E2(KDX)+E2[KD(1 -X)]}- [1 - f*(X)] (5c) 

The solution must consider three regions in the flow direc
tion. For 0<z<z0 the entire width of the layer is partially 
solidified. When z0 <z<Z\ a portion of the width is complete
ly solidified. For z>Z\ all of the drops are solid. 

Analytical Solution for Region 0<z<z9. In this region, 
KX = axs = 0, and since T(x) = Tf throughout the region, the 
1 - f*(K) = 0. The first and last terms on the right side of equa
tion (5b) are then zero. The energy equation (4a) applies for 
local liquid fraction, and it becomes 

— = ^-[E2(K) + E2(KD-K)\ V(K, f = 0 ) = l (6) 

We integrate with respect to f and apply the initial condition 
to obtain 

V=1-^[E2(K) + E2(KD-K)]T (7) 

When V has decreased to zero at the boundaries K = 0 and KD, 
the drops are completely solidified at the edge of the layer; this 
is at z = z0 in Fig. 1. The corresponding T0 = Z0/U is found 
from equation (7) by letting V= 0 at K = 0 to obtain 

T0: 
*°n z0 2 1 

(8a) 
pcsD u SKD 1+E2(KD) 

This f0 is inserted into equation (7) to obtain the V distribu 
tion at location z0 as 

E2(K) + E2(KD~K) 
^ K , f 0 ) = l — 

= 1 -

1+E2(KD) 

E2(KDX) + E2[KD(1-X)] 
(8*) 

1+E2(KD) 

This distribution is shown in Fig. 2, and it serves as the initial 
condition for the next region in Fig. 1 where xs is a variable. 
An alternative form for equation (7) is found by use of (8a) 

- E2(K)+E2(KD-K) f 

1+E2(KD) T0 

Fig. 2 Distribution of liquid fraction across layer when drops at outer 
edge become solid 

Numerical Solution for Region z0<z<Zi. Starting with 
equation (8b) as an initial distribution of V(X), and with T(X, 
f0) = 1, equations (4a) and (4b) are integrated forward in time 
starting from f0 to give results within the region between z0 

and Z\ • The finite difference forms that were used are 

V(X, f + Af)= V(X, f)-AfS 

T(X, f+Af)=f(X, f ) - A f 

1 dqr 

4aTj dX 
(X, f) (9a) 

1 dqr 

AoT} dX 
(X, f) (9b) 

where dqr/dX at (X, f) is found from equation (5c). This was 
evaluated numerically by dividing the thickness of the layer in
to increments of size AX. By use of symmetry, the integration 
forward in f was carried out only in the region of X between 0 
and 1/2. 

Since at T0 the V(X) = 0 at X= 0,_the use of equation (9a) for 
the first time increment to obtain V(X, T0 + AT) yields negative 
V values for small X. The AX interval was then located within 
which V(X,j0 + AT) changes sign, and the value of Xs(f + Af) 
at which V(X, T0 + AT) = 0 was found by using Newton's 
divided-difference interpolating polynomial (Carnahan et al., 
1969). Then equation (9b) was applied to obtain new 
temperature values, f(X, f0 + A_f), at the Xmesh points where 
X<XS. With the new set of f values for X<XS, and with 
f = l for Xs<X<\/2, new values of the radiative cooling 
term were found from equation (5c) by using symmetric values 
for f(X) when X>\/2. The forward integration for V and f 
was continued until Xs reached 1/2 so that all the drops had 
become completely solidified. This occurred at f{ corre
sponding to T1=ZI/U in the physical geometry. To illustrate 
the cooling process, some typical profiles of Fand Tare given 
in Fig. 3, and the behavior of Xs is shown in Fig. 4. 

Numerical Solution for Region z > Z\. In this region there 
is only sensible heat loss from completely solidified drops, and 
equation (9b) applies. The forward integration in time was 
continued as previously described. With increasing f, the con
dition is reached where the layer emittance em becomes con
stant. This is a consequence of the similarity solution obtained 
by Siegel (1987c). Typical temperature profiles during the sen
sible cooling process are shown in Fig. 3. 

Energy Loss and Emittance of Layer. With V and T 
known as a function of T, and hence for z= ur along the length 
of the drop-filled layer, the heat transfer characteristics of the 
layer can be obtained. An important quantity is the energy 
content of the layer as a function of z (or T). 
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Fig. 3(a) Optical thickness, KD = 1 
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Fig. 4 Transient movement of boundary of completely solidified region 

Within the region 0 < z < z 0 ( 0 < f < f 0 ) , the temperature is 
uniform across the layer, T— Tf. Hence the emittance of the 
layer is e = q/oTj=l-2E}(KD), and the energy lost is con
stant with time. It follows that at time r the remaining energy 
in a portion of the layer with unit boundary area is 
p(csTf+\)D-2[l -2E3(KD)]OT}T. If this is divided by the in
itial sensible energy, the result is 

Energy at f E(f) 
£^(0) Initial sensible energy 

1+-
1 1 

-[l-2E,(KD)\f ( 0 < f < f 0 ) (10) 

After solidification starts, the energy at T in a volume of 
the layer bounded by a unit area of outer boundary is 
2p[cf0

s Tdx+csTf(D/2-xs) + \\D
x'

2 Vdx\. This can be writ
ten in the convenient form s 

E(f) _ CM*) 
= 1-2 (\-T)dX 

Jo 

+ — [,.,*? d* (fo<f) (11) 

3,(0) 
2 f l / 2 

"s"Jjf,(f) 

When freezing is complete, the evaluation of equation (11) is 
simplified since V= 0 and Xs = 1/2. 

The layer emittance, based on a reference temperature Tr, 
is obtained from the rate of energy change as 
e = ( [E(T) -E(T + AT)]/2AT)(1/CT7?) which gives 

E{f) £ ( f+A f ) -

-Es(0) Es(0) 

Af -m (12) 

The Tr used here will be either 7) or T,„ = (\/D) \" T dx. As a 
check on the numerical work, the layer emittance was 
calculated in a second way by use of the radiative flux within a 
plane layer, given by Siegel and Howell (1981) as 

0 .1 .2 . 3 A .5 

X = X/D 

Fig. 3(b) Optical thickness, KD = 5 

Fig. 3 Transient distributions of liquid fraction and temperature; 
Stefan number S = 2 

Since the layer can cool to the temperature of space, which 
is close to absolute zero, the energy within the layer will be 
specified above this zero level. The initial energy per unit 
volume is p(csTf + \). It is convenient to normalize the energy 
relative to the initial sensible energy per unit volume, pcsTj. 
Then the ratio (initial energy)/(initial sensible energy) = 
1 + 1/S. 

(13) 

qr(K, T) = 2 V <JT*{K*)E2(K - K*)dK* 

-2\ aTX<<K*)E1(K*-K)dK* 

This was evaluated at K = 0 to obtain the boundary heat flux. 
Then the qr(0, T) was expressed as integrals over the regions 
0<K<KS and KD-KS<K<KD within which tis a variable, and 
over KS<K<KD-KS within which f= 1. This yields the emit
tance 

g f(0, r) 
e(r)= - j — = 2 ( - ^ " ) 4 [\l° T^K*)E2{K*)dK* 

+ E3(K,)-E3{KD-K,)+ \"D P{K*)E2{K*)dA (14) 
'D-'s 
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Equation (14) can also be used to check the time variation of 
energy within the layer to compare with equation (11). Equa
tion (10) gives the energy variation for f up to f0. Using equa
tion (8a) yields at f0 

Wo) _ 1 t 1 1 1-2E3(KD) 

Es(0) S SKD \+E2{KD) 

Then by integrating the rate of energy loss obtained from 
equation (14) with Tr = Tf 

E(f) E(f0) 1 (f 

Numerical Integration. For the numerical portion of the 
transient solution, the radiation integrals must be evaluated 
quite accurately. Since the exponential integral E] becomes in
finite when its argument is zero, care must be taken when K* 
approaches K. The quantity -Ex can be integrated to obtain 
E2, which is unity for a zero argument. Hence the radiation in
tegrals can be evaluated analytically for a very small region on 
either side of the singularity. The numerical calculations were 
repeated with the size of this small region reduced until it had 
no effect on the results. In the regions away from the 
singularity, the integrations were performed with a Gaussian 
subroutine available on the computer system. The accuracy of 
some of the integrations was checked using a Simpson's-rule 
subroutine. Between 80 and 120 AX intervals were used across 
the layer width. The Af depended on KD and S, and was in
creased in size as the cooling rate decreased as the layer 
temperatures diminished. The calculations were repeated with 
smaller time increments to be sure that the results did not dif
fer. Each transient solution required 5 min or less on an IBM 
370 computer. 

Results and Discussion 

The layer filled with drops is moving through space with a 
uniform velocity, and hence the cooling results can be dis
cussed either in terms of the distance z traveled from the 
droplet generator, or in terms of the time z/u following ex
posure to space. Both of these independent variables will be 
used for discussing the results. Results are given for three op
tical thicknesses, KD=\,2, and 5, and for S= 1, 2, 4, and oo. 
Since S = csTf/\, the S = oo corresponds to the limit of zero la
tent heat (cooling without phase change). For materials such 
as water, aluminum, beryllium, and mercury, the range of S is 
from about 1.5 to 3. 

The drops are generated in all-liquid form at the solidifica
tion temperature Tj. Radiative cooling then causes the drops 
to start solidifying. As long as there is some liquid throughout 
the entire layer cross section, it will remain at uniform 
temperature Tf, and the layer emittance, 1 -2E3(KD), depends 
only on the optical thickness. The energy in the layer decreases 
with z or T in a linear manner until the liquid fraction in the 
outermost portion of the layer, which is cooling most rapidly, 
decreases to zero; this occurs at T0 = ZQ/U obtained from equa
tion (8a). The distribution of liquid fraction at this time, equa
tion (8b), is shown in Fig. 2 for three optical thicknesses. The 
distribution becomes more uniform as the optical thickness is 
decreased. This is because radiative energy can leave the cen
tral portions of the layer more readily, resulting in a more 
uniform cooling distribution throughout the layer. In the limit 
for a layer that is optically very thin, the layer will cool 
uniformly throughout its thickness. 

The variation of local liquid fraction with time is given in 
Fig. 3 for a few values of f less than f0> as obtained from 
equation (7a). After solidification starts, V=0 in the com
pletely solidified region, X<XS, while f = 1 in the partially 
solidified region, X>XS. This is shown in Fig. 3 where typical 
profiles of Fand Tare given. Results are given for two optical 

Fig. 5 Transient energy within layer, relative to initial sensible energy 

thicknesses, KD = 1 and 5, for S = 2. The curves for the optical
ly thick layer, KD = 5, show the effect of the relatively high 
cooling in the outer regions of the layer as compared with the 
slow cooling of the inner portions. The resulting profiles for 
KD = 1 are much more uniform than for KD = 5. 

The profiles in Fig. 3 show, in a limited way, the propaga
tion of the dividing boundary between the completely and par
tially solidified regions. This propagation is shown in more 
detail in Fig. 4. Since S is the ratio of sensible to latent heat, it 
is the curves for S = 1 that show the effect of the largest latent 
heat; this results in the slowest propagation rate. As the layer 
is made more optically thin, a greater portion of the latent 
energy can be radiated away from its interior before the outer 
part of the layer becomes completely solidified. Hence, after 
solidification starts, Xs goes from 0 to 1/2 much more rapidly 
when KD = 1 than when KD = 5. 

The energy in the layer is shown as a function of f in Fig. 5. 
The energy has been normalized by its initial sensible energy 
pcsTjD. For S = 1, the initial sensible and latent energies are 
equal so that the curves start from an energy ratio of 2. For 
S = oo there is no latent energy, and the curves start from uni
ty. Each curve for S= 1, 2, and 4 starts with a linear portion 
within which the two-phase layer is cooling at uniform 
temperature and with a constant emittance. The location 
where this linear portion ends is marked by a small arrow. A 
second arrow at a larger time shows when the completely 
solidified region has propagated to the center of the layer. The 
abscissa in Fig. 5, f=(AaTj/pcsD)r, is a convenient dimen-
sionless variable for plotting results as it tends to confine the 
curves for various KD within the same horizontal scale. 
However, as pointed out in relation to the cooling curves in 
Siegel (1987a), the f may be misleading when comparing the 
cooling rates for layers of various optical thicknesses. This is 
because quantities within the dimensionless group, f, may be 
changed as KD is changed. For example, a common com
parison would be for two layers with different thicknesses D 
that contain droplets of the same size, fluid, and number den
sity. For these conditions the absorption coefficient would re
main the same and hence, in Fig. 5, the curves for KD = 5 
would be for a layer with D that is five times larger than for 
the curves with KD = 1. Since rccfD the cooling times would be 
much larger for KD = 5 as compared with KD = \; however, it 
must be realized that the layer is five times thicker and hence 
contains five times as much energy. Similar behavior is ob
tained if D is kept constant while the droplet number density is 
changed. The absorption coefficient and the layer density are 
both proportional to number density so that the change in KD 

is accompanied by the same proportional change in T. In Siegel 
(1987a) the variable TKD/3 was sometimes used. Since a 
= EairR2

dN a n d p = p d (4 / 3 ) IT R d N, t h e TKD/3 
= (oT}Ea/pdcsRd)r, the quantity in parentheses depends only 
on the droplet properties and not on D or N. 
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Fig. 6 Transient heat loss rates from radiating layer 
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Fig. 7 Layer emittance based on instantaneous integrated mean layer 
temperature 

The instantaneous rates of energy loss are given in Fig. 6. 
Each part of the figure presents results for a different KD. All 
of the curves on each part of the figure begin at the same or
dinate, which is equal to the emittance of a layer at uniform 
temperature. The cooling rate remains at this value until the 
outermost portion of the layer becomes completely solid. The 
temperatures in the outermost region then decrease by sensible 

cooling, and as a result the radiative cooling rate decreases 
substantially. 

In Fig. 7 the cooling rate is shown normalized by aT^„ where 
Tm is the integrated mean layer temperature; this normalized 
quantity is the emittance based on Tm. The Tm is not a very 
useful reference temperature since, during the two-phase por
tion of the cooling, it is not proportional to the energy in the 
layer. The reason for giving Fig. 7 is to point out that em starts 
from the value for a layer at uniform temperature and then, at 
a time after complete solidification, arrives at a lower constant 
value. This is a result of the similarity solution obtained by 
Siegel (1987c). The curves drop below the similarity result dur
ing the two-phase cooling region, since the central part of the 
layer remains at uniform temperature Tj. This maintains a 
high value of Tm so the e,„ becomes smaller than the e,„ that is 
finally reached. 

Concluding Remarks 

An analysis was made of the transient cooling of a plane 
layer filled with a large number of drops that absorb and emit 
thermal radiation. The drops start in all liquid form at their 
solidification temperature and are then exposed to a space en
vironment assumed at absolute zero temperature. For the first 
part of the cooling transient that follows, a convenient 
analytical solution is obtained. During this first portion, 
radiation removes latent heat from the layer, which remains at 
uniform temperature, and thus has a constant emittance that 
depends only on the optical thickness of the layer. The second 
portion of the transient involves loss of both latent and sensi
ble energy. During this period the temperature decreases in the 
outer regions of the layer; this produces a rapid decrease in the 
layer emittance, and the emittance falls below the value that is 
reached later in the cooling process. In the final portion of the 
transient cooling, the drops are all solid. For the completely 
solidified layer, a similarity condition is ultimately reached 
wherein the layer emittance, based on the instantaneous heat 
loss and integrated mean temperature, becomes constant. 
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An Analytical and Experimental 
Study of Falling-Film Evaporation 
on a Horizontal Tube 
Heat transfer for saturated falling-film evaporation on a horizontal smooth tube has 
been studied through analysis and experimentation to investigate the effects of film 
flow rate, liquid feed height, and wall superheat. Two models have been proposed, 
both based upon three defined heat transfer regions: the jet impingement region, the 
thermal developing region, and the fully developed region. The model that uses an 
experimental correlation for heat transfer in the fully developed region compares 
favorably with experimental data and other predictions reported for the case where 
the liquid feed is in a sheet. 

1 Introduction 

Heat transfer through falling-film or spray-film evapora
tion has been widely employed in heat exchange devices in the 
chemical, refrigeration, petroleum refining, desalination, and 
food industries. In the closed-cycle ocean thermal energy con
version (OTEC) system, a horizontal-tube spray-film 
evaporator has been proposed to operate at the available small 
temperature difference. The horizontal-tube, falling-film 
evaporator basically consists of a bundle of horizontal tubes 
connected by headers at each end, as in a conventional shell-
and-tube heat exchanger. The shell-side liquid is introduced 
through spray nozzles to the top of the bundle and falls from 
tube to tube. Liquid films flow and evaporate on the outside 
tube surfaces. 

The principal advantages of horizontal-tube, falling-film 
evaporators are high heat transfer rates at small temperature 
differences and small liquid inventory as compared with 
flooded-bundle evaporators. Since there is no liquid pool, the 
effect of hydrostatic head on the heat transfer is eliminated. 
The horizontal-tube, falling-film evaporators also show ad
vantages over vertical-tube evaporators in dealing with prob
lems such as liquid distribution, leveling, noncondensable 
gases on the tube side, fouling, and liquid entrainment (Yundt 
and Rhinesmith, 1981). 

Individual tube performance within the tube bundle of a 
horizontal-tube, multiple-effect (HTME) desalination facility 
was reported by Cannizzaro et al. (1974). However, flow rates 
over the individual tubes were not measured. The heat transfer 
coefficients for evaporating freshwater films on single tubes 
reported by Fletcher et al. (1973) were significantly lower than 
those obtained by Cannizzaro et al. In a subsequent effort, 
Fletcher et al. (1975) investigated evaporating saturated 
seawater films on horizontal tubes. The data obtained are 50 
percent higher than those for distilled water films but still 
slightly lower than the seawater data reported by Cannizzaro. 
Par ken and Fletcher (1982) observed an increase in nonboiling 
evaporation coefficients with increasing flow rate. However, 
Liu (1975) found that the heat transfer coefficient varied only 
with the water temperature and the liquid feed height. 

The above survey of experiments suggests a need for more 
data, particularly to clarify the effects of film flow rate and 
liquid feed height. All the data reported show no influence of 
heat flux on heat transfer coefficient. However, a question can 
be raised as to the anticipated increase in heat transfer coeffi
cient due to thinning of the film at a high heat flux. These are 
the issues to be investigated in this work. 

With regard to prediction methods for falling-film evapora-
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tion on a horizontal tube, the correlations proposed by Owens 
(1978) are based upon his own experimental data plus those of 
Conti (1978) and Liu (1975). The semi-analytical model of 
Lorenz and Yung (1979) includes two distinct convective heat 
transfer regions: thermal developing region and fully 
developed region. However, the length of the developing 
region was found to be underestimated; also no analysis was 
provided for the fully developed region. Cerza and Sernas 
(1983) developed a mathematical model for the thermal 
developing region of a liquid film falling along a vertical wall 
with uniform heat flux. Subsequently, in a numerical ap
proach, Parken and Fletcher (1982) considered the high local 
heat transfer coefficient due to the attacking liquid feed near 
the apex of the tube. Sabin and Poppendiek (1978) proposed a 
model for fully developed film evaporation based on Nusselt's 
(1916) film condensation work. A similar model was 
developed by Nakazatomi and Bergles (1981). However, as 
will be explained later in the analysis, errors were found in 
both approaches. These two models both assumed heat 
transferred through conduction across the liquid film and 
evaporation at the free surface. Agreements with experimental 
data were found even though the effects of jet impingement 
and thermal development were not considered. The question is 
also raised as to the importance of heat convection within the 
film. It is believed a pure conduction analysis is valid only if 
the film is thin or the flow rate is low. The effect of convection 
should become important at higher flow rates. An erroneous 
conclusion, that a Nusselt-type conduction analysis can 
satisfactorily predict the heat transfer without considering ef
fects of jet impingement, thermal development, and convec
tion, might have been drawn because of mistakes made in the 
analyses. It is therefore important to develop the correct solu
tion in order to examine the limit of validity of the conduction 
analysis. 

Two models for saturated, nonboiling, falling-film evapora
tion on a horizontal tube will be presented in this work, both 
based on three defined heat transfer regions: the jet impinge
ment region, the thermal developing region, and the fully 
developed region. The only difference between the two models 
is the treatment of the fully developed region. One model uses 
a conduction solution based on Nusselt's (1916) analysis of 
film condensation on a horizontal tube, and the other uses an 
experimental correlation by Chun and Seban (1972) for fully 
developed film evaporation on a vertical tube. 

2 Heat Transfer Models 

The present analysis considers heat transfer in three distinct 
regions characterized as follows. When a thin film flow on the 
tube surface is established by supplying liquid at saturation 
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temperature on the top of a horizontal tube as shown in Fig. 1, 
there is a short jet impingement region where the heat transfer 
coefficient is particularly high because of impingement of the 
liquid. A subsequent thermal developing region is required for 
the film flow to be superheated to a fully developed linear pro
file. Although latent heat transfer occurs in this region, most 
of the heat transfer goes into superheating the liquid film. A 
fully developed region, characterized by evaporation at the 
free surface of the film, immediately follows the thermal 
developing region up to the bottom of the tube where the liq
uid breaks off. 

2.1 Jet Impingement Region. Since the film thickness is 
much smaller than the tube radius, and since the impinging jet 
flow is expected to be influential only in a short region, the 
situation at the top of the horizontal tube may be considered 
as a liquid jet impinging on a flat plate. Heat transfer for a 
sheet liquid jet striking a heating surface has been studied by 
McMurray et al. (1966) and Miyasaka and Inada (1980). They 
found that the flow field can be divided into three zones: 
stagnation flow, impingement flow, and uniform parallel 
flow. As shown in Fig. 2 (Miyasaka and Inada, 1980), the 
stagnation flow zone is characterized by the velocity just out
side the hydrodynamic boundary layer of the jet flow «max, 
linearly proportional to the distance x from the stagnation 
point. The local heat transfer coefficient data in the stagnation 
flow zone can be correlated by the following equation: 

h< = 1.03Frl d(um3iK/Uj) _Uj_V 

VW J 
(1) 

d(x/w) 
Since the velocity gradient is constant in the stagnation flow 
zone, this is also the equation for the average heat transfer 
coefficient hs. The jet velocity Uj for the case of a falling-film 
evaporator is that of a free falling body, *J2gH, where H is the 
liquid feed height. The jet width w is calculated from the con
servation of mass; i.e., w = 2r,/(w//o), where T,- is the irriga
tion rate at the top of the tube. As shown in Fig. 2, the stagna
tion flow zone covers the region of 0 < x/w < 0.6; therefore, 
the angle 

-«(-f) (2) 

is taken as the angular position at the end of the stagnation 
flow zone. 

The impingement flow zone covers the range of 0.5 < 

I STAGNATION FLOW 
REGION 

II IMPINGEMENT 
FLOW REGION 

111 THERMAL 
DEVELOPING 
REGION 

IV FULLY 
DEVELOPED 
REGION 

Fig. 1 Model for falling-film evaporation on a horizontal tube 
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Fig. 2 Distribution of velocity just outside the hydrodynamic boundary 
layer in the Jet impingement region 

"max/"; < l-°- Tn e local heat transfer data are correlated by 
the following equations (Miyasaka and Inada, 1980): 

Nu,-=-
h:X 

= 0.73Pr1/3Re' l /3pp0.5 (3) 

CP 
D 
F 

g 
H 
h 
h 

hfe 
k 
P 

Pr 
1" 
R 

Re 

= 
= 

= 
= 
= 
= 

= 
= 
= 

= 
= 
= 
= 

constant-pressure specific heat 
outer diameter of tube 
coefficient defined in equation 
(19) 
acceleration of gravity 
liquid feed height 
heat transfer coefficient 
average heat transfer 
coefficient 
latent heat of vaporization 
thermal conductivity 
parameter defined in equation 
(20) 
Prandtl number 
average surface heat flux 
outer radius of tube 
film Reynolds number 
= 417,1, 

T --
AT = 
AT --

u = 
u -
w = 
X = 

y = 

a = 

r = 
5 = 
/* = 
v -

P = 

= temperature 
= wall superheat = Tw — Ts 

= average wall superheat 
= velocity 
= average velocity 
= jet width 
= distance along the heating 

surface 
= distance in the direction nor

mal to the heating surface 
= thermal diffusivity = k/pCp 

= mass flow rate of film per unit 
length on one side of tube 

= film thickness 
= dynamic viscosity 
= kinematic viscosity 
= density 

a = surface tension 
r = time 
<t> = angular position 

Subscripts 

c = convective 
d = developing 
/ = liquid; film 

fd = fully developed 
g = gas; vapor 
/ = inlet condition; impingement 
J = jet 
s = saturation; stagnation 

tr = transition 
w = wall 
oo = condition well away from the 

heat transfer surface 
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for a laminar boundary layer, and 

h,x 
Nu; - = 0.037Pr1/3Re? (4) 

for a turbulent boundary layer. Note that the local Reynolds 
number Re^ is based on the local velocity just outside the 
boundary layer «max(x): 

R i^wW ( 
V 

The hydrodynamic boundary layer is laminar from the stagna
tion point to some critical Reynolds number Rec, where transi
tion to a turbulent boundary layer takes place. According to 
the data reported by McMurray et al. (1966), Rec is about 4.5 
x 105. The average heat transfer coefficient in the impinge
ment flow zone ft,- can be calculated numerically from the local 
«max data given in Fig. 2. The impingement flow zone covers 
the range of 0.6 < x/w < 2.0. Therefore the angle 

*-"(-f) (6) 

is taken as the angular position at the end of the impingement 
flow zone. The flow is considered to be hydrodynamically 
developed at this point. 

2.2 Thermal Developing Region. The analysis for the ther
mal developing region is based on the following assumptions: 

(a) The entire tube surface is covered with liquid film; i.e., 
there is perfect wetting 

(b) the film flow is laminar 
(c) the film flow is steady 
(rf) the film thickness is small compared to the tube 

diameter 
(e) there is no nucleate boiling within the film 
(/) heat transfer is only by conduction across the film 
(g) evaporation occurs on the liquid-vapor interface where 

the temperature is at saturation 
(ft) the wall temperature is uniform 
(0 the drag on the liquid-vapor interface is negligible 
(/) the fluid properties are constant 
(£) the surface tension effect is negligible 

The fully developed velocity distribution in a liquid film 
flowing over a horizontal tube, calculated by considering a 
force balance on an element of film along with the no-slip 
boundary condition, is 

MC.«) — 
g(pf-pMn <t> (y8-y2/2) (7) 

and the mean velocity, obtained by integrating u across the 
thickness, is 

_ _ g(pf -Pg)(sin <ft)52 

"(*>~ 3^ 

with the film thickness 

(8) 

3/JY 
" ( * ) • 

-gP/(Pf-Pg)sm #-
(9) 

For constant F, this analysis leads to a nearly constant value of 
5 with respect to </> as shown in Fig. 3. The film thickness does 
approach infinity toward the top and the bottom of the tube. 
However, the thermal developing region always covers the 
central region where the film thickness is almost constant. The 
velocity and film thickness at <j> = 90 deg are thus used 
throughout the developing region. 

In the thermal developing region, heat from the wall is 
transferred to superheat the film flow. Although latent heat 
transport occurs at the free surface, most of the heat goes into 

180 60 80 100 120 

ANGULAR POSITION, DEGREE 

Fig. 3 Variation of film thickness with respect to angular position 

Fig. 4 Progress of temperature profile in the thermal developing region 

superheating the film. Therefore, the film flow rate can also 
be assumed constant throughout the region. With respect to a 
coordinate system moving at the same velocity as the film, the 
change of temperature profile in the developing region can be 
obtained by solving the one-dimensional transient heat con
duction equation 

8T d2T 
•-u-^r- (10) dT 

with the initial condition 

1 (0,7) ~ J s> 

and the boundary conditions 

^(T,O) = Tw, 

^(T,«) = Ts, 

by2 

0<y<5 

T>0 

r > 0 

(11) 

(12) 

(13) 

Note that although the thermal developing region starts from 
4>jt its solution is based on a starting condition of saturation 
temperature at the stagnation point, as given by equation (11). 
The heat transfer from the stagnation point to $,• will be ex
cluded in calculating heat transfer in the thermal developing 
region, as shown later in equation (21), because this heat 
transfer has been considered in the jet impingement region. 

The above problem has a nonhomogeneous boundary con
dition at y = 0. The solution can be obtained by converting 
the nonhomogeneous problem into a homogeneous one by the 
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Fig. 5 Relation between the coefficient F and the parameter P 

use of a partial solution to the nonhomogeneous problem. The 
problem also can be solved by the Laplace transformation 
method. The solution is given as (Myers, 1971) 

1
 (TJO 

T -T 
y_ 
8 

2 " sin nir(y/S) 

7T _ „ • / M 2 T 2 

n»exp V 52 ) 

(14) 

It is observed that the solution is composed of the steady-state 
solution and the transient term in the form of an infinite 
series. The temperature profile becomes more and more linear 
with time. However, theoretically it takes an infinitely long 
time to reach the linear temperature profile. The progress of 
the temperature profile in the thermal developing film is plot
ted in Fig. 4, which shows that the temperature profile is very 
close to linear for T>82/wa. Therefore the approximate time 
required to reach the steady-state temperature profile is taken 
as 

rd--
52 

(15) 

It is noted that Lorenz and Yung (1979) took rd = S2/4-ra; 
but the temperature profile is far from linear at that value of T. 

The average heat transfer rate in the developing region from 
time zero to T is evaluated by integrating the local heat transfer 
rate at the wall 

By substituting 

( 3 f t 0 "\ m ^ 

dr (16) 

(17) 

the average heat transfer rate from the top of the tube to the 
angular position <j> can be expressed as 

^,-.)=^(r,-r,)[° , / (
3^rP' )]1/3 (18> 

where 

F = 1 + 4 r E - T n - e x p ( - « 2 7 r P ) ] (19) 

P = —— (20) 
<52 

The relation between the coefficient F and the parameter P is 
plotted in Fig. 5. For the thermal developing region from <j>t to 
4>d, the average heat transfer coefficient is readily calculated 
from 

h. 
bdlho-tj) -</>;<7d,<o- * , • ) 

(21) 
*" (4>d-4>i)iTw-Ts) 

The angular position at the end of the developing region <f>d 

can be obtained by substituting the time required for develop
ment rd into equation (17) 

0 d = 
1 ' 3 / J 4 \ 

iraR V gp5 / 
(22) 

Note that 4>d may exceed IT when the film flow rate is high. 
This means the film flow is still developing when breaking off 
from the tube, and there is no fully developed region in the 
process. The value ir should be used for <j>d in this case. 

Lorenz and Yung (1979) calculated the total heat transfer 
rate by considering the enthalpy difference between the inlet 
and the outlet of the thermal developing region. The total heat 
transfer rate equals the enthalpy change only if the free sur
face is insulated. However, the boundary condition at the free 
surface is at the saturation temperature Ts. The heat transfer 
through evaporation at the free surface should be considered 
in their analysis. In the present analysis, the total heat transfer 
rate is calculated by integrating the local temperature gradient 
at the wall, as shown in equation (16). 

2.3 Fully Deve loped Region 

2.3.1 Conduction Solution. In this analysis, a linear 
temperature profile is assumed throughout the fully developed 
region. The assumptions made in the thermal developing 
region all apply to this fully developed solution. Heat is con
ducted across the film, and evaporation takes place at the free 
surface: 

-hfg-dT =*/(-^V^)^d* (23) 

The differential form of equation (9) can be substituted for 
dT on the left-hand side of the equation; this leads to a dif
ferential equation of 5 as a function of 4> 

-ed<j> = 5d(d3sm<j>) (24) 

where 

3Rnfkf(Tw - Ts) 
hfgSP/(P/-Pg) 

In order to solve equation (24), a nondimensional variable is 
introduced 

z = 54/e 

and equation (24) becomes 

3 . dz 
sin th -

4 
sin 4> 

d<t> 
+ z cos <t> + 1 = 0 

(25) 

(26) 

(27) 

This linear differential equation is readily solved as 

z = 3 s in 4 3<A \Jo 
sinui 4>'d<t>' +C) (28) 

Assuming that the fully developed region starts at angular 
position 4>d, the integration constant C is evaluated by the 
boundary condition at 4>d, where the film thickness based on 
the hydrodynamics is given by equation (9). Assuming that the 
film flow rate at <f>d is Th the film thickness at <t>d is 

8(<M=[-
3/K/r, 

-gPf(Pf~Pg) sin <t>d. 

C is thus obtained as 

%r,. -L[. 
4e lpfg(pf 

r, -|4/3 _ p 
- 0 „ ) J JO 

4>d(j) 

(29) 

(30) 
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Fig. 6 Analytical predictions of Nusselt number in the fully developed 
region 

Substituting Cback into equation (28) yields the film thickness 
as a function of </> 

«(*)=[[• 
3/yr,-

gP/(Pf-pg)sm (k 

4e f * 

3 sin4/3 <f> 
sin"3 <t> '<**'] ' (31) 

Based on the film thickness solution, the heat transfer coef
ficient at angular position </> is calculated as 

[[• 
3/yr, 

gP/(p/-Pg) sin <j> 

4e 
3 sin4/3 <t> 

sin1/3 </>'</<£' 

(32) 

and the mean value of the Nusselt number over the fully 
developed region is 

Nuw = - * ^ u/d-

sin1/3 4> 

[A—— sin1/3 4>'d<l>') 

d<t> (33) 

where the coefficient A is defined as 

.-[. 3f*/l7 
gpf(pf-pg) • ] ' " [ • 

"fg 

Rkj(Tw-Ts). 
(34) 

and e is defined in equation (25). Note that Nu« is based on 
elM. 

A result similar to equation (33) was obtained by Sabin and 
Poppendiek (1978); however, the coefficient in the 
denominator of the integrand was erroneously given as A/24/3 

because of confusion between the total mass flow rate imping
ing on the tube and the film flow rate on one side of the tube. 
This led to an overestimation of the mean fully developed heat 
transfer coefficient. This might explain why their prediction 
was found to be in reasonable agreement with the experimen
tal data, even though the effects of the jet impingement region 
and the thermal developing region were not considered. The 
work reported by Nakazatomi and Bergles (1981) stops at the 
expression of film thickness. The heat transfer coefficient was 
then numerically calculated. However, the expression for film 
thickness does not appear to be correct. 

It is observed that the smaller the value of A, the greater the 
value of Nuyy. The heat transfer coefficient increases because 
of effective heat transfer across a thin liquid film when the 
flow rate is small. However, a mathematical problem arises 
when^l is smaller than (4/3)J* sin1/3 4>'d<t>'. Physically, this 

lower limit corresponds to incipient dryout at the bottom of 
the tube. 

The average Nusselt number can be obtained from Fig. 6 for 
a known value of A. Data shown in Fig. 6 were generated by 
fitting a sixth-degree polynomial to the integral JQsin1/3 <j>'d4>' 
and numerically integrating using the trapezoidal rule. It is 
noted that the mean fully developed heat transfer coefficient is 
quite constant for 4>d up to 90 deg. The prediction using the 
above solution for the fully developed region is designated as 
Model I. 

2.3.2 Correlation Approach. For reasons of simplicity, the 
above analysis for the fully developed region is based on the 
assumption that heat transfer is only by conduction across the 
liquid film. An alternative approach is to adopt the following 
correlations by Chun and Seban (1972) which are based on ex
perimental data for an evaporating film falling along a vertical 
wall: 

Laminar: 

^ ( ^ ) 1 / 3 = 1 . 1 0 R e - -

Wavy-laminar: 

(—J =0.822 Re" 0 2 2 

(-5-) 

JLs„.61(^f)-""(35, 
fi \ pa1 / 

k \g 

0.61 
l/n Y 

< <1450Pr- ' -0 6 (36) 

Turbulent: 

k \eJ 
= 3.8xl0-3Pr°-65Re° 

->1450Pr-1 0 6 

M 
(37) 

These correlations are based on the asymptotic values of the 
heat transfer data for a film that is thermally and 
hydrodynamically developed after flowing through a 
preheating section. The correlations are considered applicable 
to falling-film evaporation on a horizontal tube in view of the 
small film thickness compared with tube diameter. The predic
tion using the above correlations to calculate the mean heat 
transfer coefficient in the fully developed region is designated 
Model II. 

2.4 Overall Heat Transfer Coefficient. Finally, the average 
heat transfer coefficient can be calculated by summing heat 
transfer contributions from each of the regions 

In the range covered, the typical hs and h, are on the order of 
magnitude of 105 W/m2 K, while hd and hfd are an order of 
magnitude smaller. However, because the jet impingement is 
effective in a small region, it accounts for only a small portion 
of the average heat transfer coefficient. The major contribu
tion is from the fully developed region at low film flow rate 
and from the thermal developing region at high flow rate. 
Because the heat transfer in the fully developed region 
becomes less important as flow rate increases, data based on 
the two proposed models merge at a point where the film flow 
reaches thermal development at the bottom of the tube, or 0 d 

equals IT. 
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Fig. 7 Test chamber for falling-film evaporation on a horizontal 
cylinder 
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Fig. 8 Influence of film Reynolds number on the film evaporation 
coefficient 

3 Experiment 

Falling-film evaporation of water on a horizontal cylinder 
was tested. Experiments using electrically heated test sections 
with a smooth surface were conducted to investigate the ef
fects of film flow rate, liquid feed height, and heat flux. The 
test facility included a circulation pump, a filter, a rotameter, 
flow adjusting valves, and a test chamber. The large outer test 
chamber has an inner chamber holding the liquid distributor, 
test section, and auxiliary heater (see Fig. 7). The double-
chamber had an inner chamber holding the liquid distributor, 
test section, and auxiliary heater (see Fig. 7). The double-
sulation that would have hindered visual observations. The 
space in the inner chamber was maintained within 0.1 K of the 
saturation temperature during the tests. The system pressure 
was atmospheric for all tests, with a typical value of 0.99 bar. 

The falling liquid film was formed by distributing saturated 
liquid (within 0.1 K subcooling) in unsteady column jets or 
drips to the test cylinder. This was done by a distributor 
featuring a cylindrical shell enclosing an interior heater. Liq
uid heated by the interior heater to saturation overflowed 
through a slot at the top of the shell providing a film on the ex
terior shell wall. The liquid then detached from the bottom of 
the shell and impinged on the test heater. This simulated the 
situation in a real falling-film evaporator where the lower tube 
receives runoff from the tube above. A detailed configuration 
of the distributor is given by Chyu (1984). The liquid feed 
height was adjusted by moving the distributor up and down 
along the slots on the side walls of the inner chamber. It was 
observed that the liquid fed in a sheet when the gap between 
distributor and test cylinder was narrower than 3 mm, as 
shown in Fig. 7. The irrigation flow rate was measured by a 
rotameter at the inlet of the test chamber. The average sub-

cooling of the liquid feed, monitored by fluid thermocouples 
located at the bottom of the shell, was maintained within 0.1 
K. 

The test cylinder was of copper, 25.4 mm in diameter and 
152 mm in length. A central 12.7-mm-dia hole was provided 
for a cartridge heater. Six thermocouple wells of 1 mm 
diameter and 40 to 50 mm in depth were drilled 60 deg apart at 
each end, with outer edges approximately 1.5 mm from the 
outer surface. Failure to drill that small a hole straight 
along its entire depth resulted in so-called drift or runout. A 
novel method was developed to locate precisely the bottoms of 
the holes (thermocouple locations) (Chyu, 1984). This infor
mation was essential in calculating the temperature drop bet
ween the thermocouple junction and the base surface. The car
tridge heater was soldered into the cylinder to minimize con
tact resistance. Both ends of the test cylinder were insulated 
with silicone seal after thermocouple installation. 

The average heat flux was calculated from the active 
length of the cartridge heater. This calculation is justified by a 
conduction analysis showing that at a considerable axial 
distance away from the inactive zone of a cartridge heater, the 
heat flux in the test cylinder is essentially that of the average 
value based on the active length of the heater (Chyu, 1984). 
The wall temperature is the mean of the six wall temperatures 
inferred from thermocouple readings. In fact, both the ex
perimental data and the analysis (Chyu, 1984) showed that the 
test cylinder was essentially isothermal at the outer surface 
because of its thick wall. This simulates the real situation in a 
spray-film evaporator by condensing steam. 

The estimated uncertainties for the data presented are as 
follows: ±220 W/m2 in heat flux, ± 0.06 K in wall superheat 
and surface subcooling, ±0.004 kg/s-m in film flow rate, and 
±0.1 in ratio of feed height to diameter. 

4 Experimental Results and Comparison With 
Predictions 

4.1 Influence of Film Flow Rate. In Fig. 8 the experimental 
data are compared with predictions based on the present 
models as well as on the Owens (1978) correlation. The 
prediction of Model II is in excellent agreement with the ex
perimental data at H/D = 0.1. Model II is also in good agree
ment with the Owens correlation at H/D = 0.1 in the low and 
medium ranges of Reynolds number. In the high Reynolds 
number region, corresponding to turbulent flow, the Owens 
correlation predicts a constant heat transfer coefficient, while 
the present model predicts an increasing coefficient with 
Reynolds number. This is consistent with the results of Chun 
and Seban (1972) and Duckler (1960) for a falling film on a 
vertical tube wall. 

Model I predicts a heat transfer coefficient 30 percent lower 
than Model II at low Reynolds number. This is as anticipated. 
Because of convection, the real temperature profile in a film 
flow should have a steeper gradient at the wall and, therefore, 
a higher heat transfer coefficient than obtained with the linear 
profile assumed in the conduction model. In addition, the ef
fect of the waves that actually exist on the free surface of the 
film has not been considered. This contradicts the conclusion 
suggested by Sabin and Poppendiek (1978) and Nakazatomi 
and Bergles (1981) that a Nusselt-type fully developed conduc
tion analysis can satisfactorily predict falling-film evaporation 
on a horizontal tube. Apparently the erroneous conclusion 
was due to the mistakes made in their analyses. The present 
analysis demonstrates that even with effects of jet impinge
ment and thermal development taken into account, the con
duction analysis fails. 

The data of the two proposed models merge at Re = 1367 
when there is no fully developed region in the heat transfer 
process. Both models show that variations in liquid feed 
height have little effect on the heat transfer. In fact, the 
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present predictions presented in Fig. 8 are valid for H/D from 
0.1 to 2.5. 

The experimental data at H/D = 1 . 0 are in good agreement 
with the Owens correlation for turbulent nonboiling films with 
H/D = 1.0 except in the low Reynolds number region. The 
data at H/D = 1.0 are significantly higher than the present 
predictions. It was observed that liquid feed was distributed in 
columns (continuous) and droplets (discontinuous) when feed 
height was large and in a sheet when H was no larger than 3 
mm, which corresponded to H/D of approximately 0.1 based 
on the dimension of the test cylinder. The present analysis 
considers the effect of liquid feed height by assuming a two-
dimensional sheet jet striking on a flat surface. Model II can 
predict data well at H/D = 0.1 when liquid feed is in a sheet. 
However, the prediction is lower than the data when the feed 
is in columns or droplets at larger H/D. The liquid columns 
and droplets were observed to create crests and valleys at the 
apex of the horizontal tube, resulting in agitation of the film 
flow. 

At high heat flux (2.08 x 105 W/m2), the heat transfer 
coefficient is very high and independent of Reynolds number. 
This indicates the dominance of nucleate boiling in the film. 

4.2 Influence of Liquid Feed Height. The effect of varia
tions in liquid feed height on the heat transfer was investigated 
at different heat flux levels. In Fig. 9, the nondimensionalized 
heat transfer coefficients at Re = 856 are plotted against the 

nondimensionalized feed height. The low heat flux data (1.080 
X 104 W/m2 and 5.503 X 104 W/m2) show good agreement 
with the Owens (1978) correlation for turbulent falling film 
evaporation without boiling within the range of 0.1 < H/D < 
2.5. The slope of the data curve seems to agree with the 0.1 
power index of the term H/D used in his correlation. 
However, the power index should decrease at low Re in light 
of the experimental data in Fig. 8, which show that heat 
transfer coefficient is less sensitive to the change in liquid feed 
height at low Reynolds numbers. 

Model II predicts little influence of liquid feed height on the 
heat transfer coefficient. This model is based on a sheet jet of 
the liquid feed instead of liquid columns and droplets; ap
parently the liquid columns and droplets generate greater 
disturbance in the film than a sheet when falling from a 
substantial height. 

The change in feed height has a weak influence on the heat 
transfer coefficient at high heat flux (1.54 x 105 W/m2). This 
is due to nucleate boiling in the film, which dominates any 
change in hydrodynamics. 

The present data show a minimum heat transfer coefficient 
at H/D = 0.1 or H = 3 mm for the 25.4-mm-dia test cylinder. 
As mentioned before, liquid feeds in a sheet foiH= 3 mm or 
less. It was observed that bubbles were entrained from the 
distributor in which feed water was boiling and grew larger in 
the narrow space between the distributor and the test cylinder. 
These bubbles were apparently larger in size than those 
generated on the surface of the test section because of nucleate 
boiling. Some of them were carried with the falling film, and 
some of them ruptured between the distributor and the test 
section. These bubbles were considered to be responsible for 
the high heat transfer coefficients at very small H/D. 

4.3 Influence of Wall Superheat. It was expected that the 
wall superheat has an effect on the heat transfer of film 
evaporation, since greater wall superheat would yield higher 
evaporation rate and thus an increase in heat transfer coeffi
cient due to thinning of the film. The present analysis assumes 
that superheat is not a factor in the jet impingement and the 
thermal developing regions. As for the fully developed region, 
superheat participates as a variable in the conduction solution 
in Model I, while it does not appear in the Chun and Seban 
(1972) correlation used in Model II. In fact, the conduction 
solution in Model I also predicts negligible superheat influence 
on heat transfer coefficient. In Fig. 10, the experimental data 
follow^ a straight line with a slope close to unity in the q " ver
sus AT plot. The heat transfer coefficient is quite constant 
with slight increase with superheat, until in the high superheat 
range where the data show an upswing due to nucleate boiling 
within the film. It is thus confirmed that the heat transfer 
coefficient of a nonboiling falling film is not significantly in
fluenced by the wall superheat in the present test range. This is 
because convection is the major mode of heat transfer and 
there is not much thinning of the liquid film due to evapora
tion. Compared with experimental data, the Owens nonboil
ing correlation seems to be nearly satisfactory up to q " = 6 X 
104 W/m2 . Data presented in Figs. 8 and 9 also show agree
ment with Owens correlation within this limit of heat flux. 

5 Concluding Remarks 

Two models have been proposed for the evaporative heat 
transfer of a saturated falling film on a horizontal tube. Both 
are based on three defined heat transfer regions: the jet im
pingement region, the thermal developing region, and the fully 
developed region. The difference between the two models is 
only in the fully developed region. Model I uses a conduction 
solution based on Nusselt's film condensation analysis; Model 
II uses the Chun and Seban (1972) correlation for developed 
film evaporation. Model II compares favorably with the ex-
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perimental data and the Owens (1978) prediction when the 
liquid feed is in a sheet. Model I predicts a heat transfer coeffi
cient lower than other predictions and experimental data at 
low Reynolds number because the simplified conduction solu
tion for the fully developed region underestimates the heat 
transfer. The experimental heat transfer coefficients are 
higher than the present predictions when the liquid feeds in 
columns and droplets because the present predictions are 
based on liquid feed in a sheet. The experimental data show a 
weak influence of liquid feed height on heat transfer coeffi
cient. The influence is even smaller at low Reynolds numbers. 
Both models and experimental data demonstrate heat transfer 
independent of the wall superheat. It is suggested that the ef
fect of liquid feed in columns and droplets as observed in a 
real falling-film evaporator be analyzed in subsequent 
research. 
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Critical Heat Flux in Saturated 
Forced Conwection Boiling on a 
Heated Disk With an Impinging 
Jet 
Critical heat flux during forced convection boiling on an open heated disk being sup
plied with saturated liquids through a small round jet which impinges at the center 
of the disk has been studied experimentally employing refrigerant R12 at com
paratively high pressures from 0.6 to 2.8 MPa. Generalized correlations, predicting 
the CHF within an experimental range of liquid-to-vapor density ratio 5.3-41.25 
and the reciprocal of Weber number 2 x 10~3-2 x 10~7, are given for three dif
ferent characteristic regimes: V-regime where the CHF increases with an increase in 
the jet velocity, I-regime where the CHF is nearly constant with jet velocity, and HP-
regime where the CHF appears only at high pressure and again rises with an increase 
in the jet velocity. 

1 Introduction 

Monde and Katto [1, 2] and Monde [3] proposed a 
generalized correlation predicting critical heat flux (CHF) in 
saturated forced convection boiling of water and R113 at at
mospheric pressure with an impinging jet. This correlation, 
however, was not able to apply to the CHF data of R12 
measured by Katto and Shimizu [4]. They investigated the 
CHF for both saturated R12 at a comparatively high pressure 
of 0.6 to 2.79 MPa and saturated water at atmospheric 
pressure using the same boiling system as that of Monde and 
Katto [2]. Katto and Shimizu [4] divided the CHF into two 
characteristic regimes and, in addition, proposed the possibil
ity of the existence of two additional characteristic regimes. 
One of the two regimes is called V-regime because CHF 
depends on velocity; the other one is called I-regime where 
CHF is regarded as independent of velocity. 

Recently, Katto and Haramura [5] and Katto [6] proposed a 
new hydrodynamic model for the CHF mechanism which is 
applicable to the CHF not only of pool boiling but also of 
forced convection boiling both on cylinders in cross flow and 
on flat plates submerged in a uniform flow. With the aid of 
their new model and dimensional analysis, Monde [7] in
troduced a new generalized correlation, equation (1), pre
dicting the CHF data in the V-regime measured by Monde and 
Katto [1,2], Monde [3], Katto and Kunihiro [8], Katsuta [9, 
10], and Katto and Shimizu [4] 

P„Hfu -«»i-tr (• la 

Pv
 / ^P\U2{D-

(l+D/d)-°iM 

d). 

(1) 
It should be noted that equation (1) can predict the CHF on 
both upward and downward-facing heated disks because this 
equation is independent of the gravitational force. In addi
tion, it may be of importance to say [7] that the effect of D/d 
on qc<1 is successfully correlated by the function D/d in equa
tion (1), which is determined from the Katto and Haramura 
model. In addition, it is necessary to mention that the ex
ponents of 2a/piU2(D-d) and (1+D/d), exactly derived 
from the Katto and Haramura criterion [7], and 1/3 and 
- 1/3, similar to those in equation (1), while the exponent of 
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Pi/p„ is a bit smaller than that in equation (1). However, it is 
pointed out in [7] that equation (1) can predict the CHF data 
in the V-regime only, but cannot predict the CHF in the I-
regime except for the CHF in the V-regime, which is named by 
Katto and Shimizu [4], as well as the CHF appearing under the 
conditions of large D/d and low velocity u. 

More recently, Monde and Okuma [11] proposed a 
generalized correlation for the CHF on a downward-facing 
heated disk when D/d is very large and velocity u is very low 
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and the boundary between equations (1) and (2): 
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(2a/p,u2 (D-d))~om 

The CHF predicted by equation (2) is called the CHF in the L-
regime, for simplicity. 

Lienhard and Eichhorn [12] proposed a complicated cor
relation derived from the CHF data of Monde and Katto [1,2] 
and Lienhard and Hasan [13] improved their equation to 
predict the CHF of R12 measured only for D = 0.01 m at high 
pressure by Katto and Shimizu [4]. It may be of interest to 
know that their equation is continuous for the whole ex
perimental range of pressure although the CHF characteristic 
would be categorized into some groups depending on p//pv, 
2o/p/U2(D — d), and D/d according to the concept of Katto 
and Shimizu [4] and Monde [7]. More recently, after com
munication with Monde [14], Sharan and Lienhard [15] refor
mulated a generalized correlation as follows: 

qC0/pvH/gu=f(r) (W00 a/p,u2D)A^ (d/D)l/i (4) 

where/(/•) = 0.00171 r + 0.21, a n d ^ ( r ) = 0.486 + 0.06052 
(In r) - 0.0378 (In r)2 + 0.00362 (In r)\ Equation (4) is 
valid for (D/d)/(ud/v)m < 0.40 and u/<gD > 8. It should 
be necessary to elucidate the character of the function A (r) 
being rather complicated; A (r) is 0.349 or 0.329 depending on 
whether the density ratio r is 60 or 1603, in which CHF can be 
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Table 1 Variation of the function g 2 ( ) with D/d = 5 to 60 over the 
range of p,/pv = 60 to 1600 

D/d 

g2< ' 

5 

1.039 

1.057 

10 

"1.071 

1.080 

20 

1.096 
1 

1.100 

40 

1.120 
1 
1.122 

60 

1.134 

1.135 

predicted by each of equations (1) and (2), and then the 
minimum value of A (r) attains 0.272 at r = 549. 

Incidentally, it may be of interest to compare equation (1) 
with equation (4). Dividing equation (4) by equation (1) to 
eliminate qco and rearranging it, we can obtain the following 
equation: 

g(r, a/p,u2 (D-d) ,D/d)=g1(r, o/p,u2 (D-d)) 

g2(r, D/d) (5) 

where 

gl(r, a/p,u2 (D-d)) =38.1 f(r) /-0 '645 

(1000 a/p,u2 (D-d))A^~ 

g2(r,D/d)=(l+D/d)0i64 (\-d/D)A^ (d/D)1 

(5a) 

(5b) 

The function g1 (r, a/p^u2 (D — d)) gives the effect of r and 
a/p^2 (D — d) on the CHF, while the function g2 (r, D/d) 
gives mainly the effect of D/d on the CHF. It is not necessary 
to say that if g ( ) is always kept unity for the change in any 
parameters in equation (5), the two equations (1) and (4) are 
exactly the same, but it would be impossible to expect it. The 
values calculated over the range of r = 60 to 1600 from equa
tion (5b) are listed for D/d = 5 to 60 corresponding to the ex
isting experimental range in Table 1. Table 1 shows that the 
function g2 ( ) is nearly constant with the density ratio and 
these values increase about 10 percent as D/d = increases 
from 5 to 60. It is difficult from Table 1 to determine whether 
equation (1) or (4) is better at predicting the effect of D/d on 
the CHF, for the difference of 10 percent for D/d = 5 to 60 
merges into an uncertainty when measuring the CHF. It may 
be of importance to note that the functional form of D/d in 
equation (1) can be theoretically derived from the Katto and 
Haramura criterion [7]. Next, the values calculated from 
equation (5a) are shown for r = 60 to 1600 in Fig. 1. From 
Fig. 1 and Table 1, the value of function g ( ) becomes nearly 
unity for 2olpxu

2 (D — d) = 10"5 to 10~4 but tends to become 
larger than unity with the decrease in 2alpxu

2 (D~d), 
although the character of g,( ) is curious. At the point r = 
1600, the values of gj ( ) become the same for different values 
of 2olpxu

2 (D — d); for example, the value of g( ) is 1.007 or 
1.093 depending on whether D/d is 5 or 60. Comparison of 
equation (4) and the CHF data measured in the present experi
ment at comparatively high pressure, i.e., small density ratio, 
will be discussed later. 

The present study, therefore, involves an experiment of the 
CHF during forced convection boiling of saturated R12 at 
comparatively high pressures of 0.6 to 2.8 MPa on a 
downward-facing heated disk of diameter D = 0.04, 0.02, and 
0.01 m. A small round impinging jet of diameter d = 0.002 m 
is used to measure the CHF within the wide experimental 
range of p,/p„ = 5.3 to 41.25 and 2<slpxu

2 (D — d) = 2 x 
10~3 to 2 x 10~7. Furthermore, the experiments of saturated 
water at pressures of 0.1 to 0.6 MPa and of saturated Rl 13 at 
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Fig. 2 Schematic of the experimental apparatus 

pressures of 0.1 to 0.3 MPa are also made to check the 
reliability of the experimental apparatus in this experiment as 
well as to extend the experimental range of Pi/pv. 

2 Experimental Apparatus and Method of Measuring 
C H F 

The experimental apparatus is shown schematically in Fig. 
2. At the top of a pressure vessel (1) (the details of which are 
shown in Fig. 3), a copper block is set up in a heating cell (2) 
with plate-type heaters in the upper cylindrical part, to which 
electric power is supplied from an a-c transformer (3). The flat 

N o m e n c l a t u r e 

D = diameter of a heated disk qc0 = 
d = diameter of an impinging jet 
g = acceleration of gravity r = 

Hfg = latent heat of evaporation u = 
P = absolute pressure of system 

critical heat flux for 
saturated boiling 
density ratio = px/pv 

velocity of a liquid jet at noz
zle exit 

Pj = density of liquid 
Pv = density of vapor 
a = surface tension 
v = kinematic viscosity of liquid 
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end surface of the lower cylindrical part of the copper block 
provides a downward-facing heated circular surface. Three 
different diameters of D = 0.04, 0.02, and 0.01 m were 
employed as the heated surface. The circumferential surface 
of this cylindrical part is insulated with a bakelite sleeve (in the 
case of water, a ceramic sleeve was employed), and the 
clearance between the cylindrical part and the insulator is 
filled with plastic packing to prevent contact between the 
refrigerant vapor and the very high-temperature inner region 
of the copper block, thereby avoiding thermal decomposition 
of the refrigerant. The interior of the heating cell is kept at a 
pressure of 0.02 MPa lower than that of the inside of the 
pressure vessel by a N2 tank (17) using a differential pressure 
gage (16) to compensate for the force acting on the copper 
block. The test liquid, which is pressurized by a peripheral 
pump (8) and then adjusted with the nozzle heater (7) up to the 
saturation temperature corresponding to the internal pressure 
of the vessel, flows out of a nozzle (4) of inner diameter d = 
0.002 m, impinging at the center of the heated disk. The 
velocity of the liquid jet at the nozzle exit u can be determined 
by measuring the pressure difference between the inlet and 
outlet of the nozzle by means of a differential pressure 
transducer (11). The lower half of the inside of the pressure 
vessel is filled with the test liquid (about 0.4 to 0.5 m deep), 
which is heated by a vessel heater (5), and the vapor above the 
liquid is condensed by a pair of cooling coils (6). As a result, 
the prescribed saturation pressure inside the vessel is main
tained by controlling the vessel heater as well as the cooling 
coils. 

The heat flux across the heated disk as well as the 
temperature of the heated surface is determined by means of 
three chromel-alumel thermocouples set up at regular intervals 
along the axis of the cylindrical part of the copper block. The 
actual thermal conductivity of this copper block, which must 
be known to calculate the heat flux, was carefully determined 

in a preliminary experiment in the same way as that of [1, 2]. 
The heat flux can be determined with ± 5 percent from the 
two following observations: The values of the actual thermal 
for several heat fluxes in the preliminary experiment are quite 
in agreement within ± 5 percent, and the heat loss in the 
preliminary experiment is nearly equal to that in the actual ex
periment. In this experiment, the distance from the nozzle exit 
to the heated disk was always kept at 0.01 m to avoid the 
problem that the jet velocity can be decreased for an upward 
direction opposite to the gravitational force. 

The critical heat flux is determined by the following means: 
The power to the heater in the copper block is increased in in
crements that are less than 5 percent of each preceding heat 
flux, and finally a point is reached where the heated surface 
temperature runs away. At this point, the CHF is determined 
with an uncertainty of 0 to 5 percent, apart from the uncer
tainty of ± 5 percent when determining the heat flux. 

3 Experimental Data of C H F 

Figure 4 represents a variation of the CHF data for R12 
measured in this experiment with jet velocity u. The solid line 
in Fig. 4 is equation (1) predicting the CHF in the V-regime for 
each pressure. The CHF data of water and R113 obtained in 
this experiment are omitted here because the fact that the CHF 
for Pi/pv > 67.1 can be predicted with deviations of ± 20 
percent by equation (1) was already reported in [7]. 

It can be seen in Fig. 4 that at pressures of 0.57 to 2.04 MPa, 
corresponding to p,/pv = 41.25 to 8.79, the CHF data for low 
velocities of w are still predicted by equation (1), while CHF 
data for high velocities gradually deviate from the prediction 
of equation (1) and tend to become constant for any addi
tional increase in the velocity. Thus, the value of qco is nearly 
constant, independent of u. In addition, the CHF data at high 
pressures of P = 2.29 to 2.78 MPa (reduced pressure Pr = 
0.56 to 0.67) corresponding to p//p„ = 7.34 to 5.29, again in
crease with increasing velocity u, but the tendency is a bit dif
ferent from that of the CHF predicted by equation (1). In 
other words, two characteristic regimes, which are different 
from two existing ones, namely the L- and V-regimes, appear 
at moderate and high pressures, the one regime of CHF being 
approximately invariant of u and the other regime of CHF at 
high pressure. In this paper, for simplicity, the CHF which is 
approximately invariant CHF with u will be called the CHF in 
the same I-regime as named in [4]. Although the I-regime is 
named for qco invariant with u in [4], the CHF which appears 
at high pressure and increases again with an increase in u will 
be called the CHF in the HP-regime. Here, the name of the I-
regime was derived from the fact [4] that the qco data only for 
D/d = 5 were invariant with u, but from Fig. 4, it is seen that 
the qco data for D/d = 10 and 20 at moderate pressure are 
weekly dependent on u rather than invariant with u. 

Incidentally, as for CHF in forced convection boiling in a 
uniformly heated tube, it may be of interest to know that the 
CHF characteristic changes dependent on the system pressure, 
the density ratio p//pv, the ratio of the tube diameter to its 
heated length d/l, and the Weber number [16-19] and, for ex
ample, is categorized into four kinds in [17] or three kinds in 
[18]. 

4 Correlation of C H F 

The CHF in the I- and HP-regimes will be discussed here 
since all the CHF data in the V-regime including a part of the 
CHF data measured in this experiment were already detailed 
in [7]. One may deal with the CHF data in the I- and HP-
regimes on the basis of four dimensionless parameters in equa
tion (1), which would first give a clue for analyzing the CHF 
data in both regimes. As a result, an equation similar in form 
for both CHF regimes can be given as follows: 
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Fig. 4(a) Relation between CHF and jet velocity obtained for R12 (D 
0.04 m) 

The exponents /«, n, and k and the constant C can be deter
mined by means of the least-squares method to superpose the 
CHF data in each regime into each single group, where the qco 

data in the I-regime are 117 in number including 29 of the qco 

data in [4], while the qco data in the HP-regime are only 24 in 
number. This procedure gives m = 0.466, n = 0.421, k = 
- 0.303, and C = 0.691 for the CHF in the I-regime and m = 
1.27, n = 0.28, k = - 1 . 0 1 , and C= 0.172 for the CHF in the 
HP-regime to yield equations (7) and (8) as folows: 

For the I-regime: 

Qc, 

Pv Hfg « 
= 0.691 / Pi \ 0 4 6 6 / 2(7 

Pv ' ^Pi u2(D-

(1 +D/d) -°-303 

•d). 

8= 
a 

o 
o 

0.5 

P = 0.96MPa 
ox 

o 

• ' 

c r - S ' o o t f b 8 

4 - J. 1,1 1 

10 20 

u m/s 
Fig. 4(b) Relation between CHF and jet velocity obtained for R12 (D 
0.02 m) 

Table 2 Exponents and constant in equation (6) for each regime 

V - r e g i m e 

I - r e g i m e 

H P - r e g i m e 

m 

0 . 6 4 5 

0 . 4 6 6 

1 . 2 7 

n 

0 . 3 4 3 

0 . 4 2 1 

0 . 2 8 

k 

- 0 . 3 6 4 

- 0 . 3 0 3 

- 1 . 0 1 

C 

0 . 2 2 1 

0 . 6 9 1 

0 . 1 7 2 

For the HP-regime: 

q™ =0. 
Pv Hfg " v Pv 

( — ) L 2 7 ( -
2CT 

Plu
2{D-d). 

(l+D/d)~1M (8) 

(7) 

The exponents m, n, and k and the constant c are listed for 
each regime in Table 2 for convenience. It should be noted 
that the 24 data of qco may be not enough to introduce equa
tion (8). 

Figures 5, 6, and 7 show a comparison of equations (1), (7), 
and (8) with the qco data of R12 measured for D = 0.04, 0.02, 
and 0.01 m and with the qco data of R12 measured by Katto 
and Shimizu [4], respectively. In Figs. 5, 6, and 7, the capital 
letter A gives the intersecting point between equations (1) and 
(7), the capital letter B between equations (7) and (8), and the 
capital letter C between equations (8) and (1). Light solid lines 
in Figs. 5, 6, and 7 are the prediction of Sharan and 
Lienhard's equation (4). A light solid line perpendicular to 
abscissa gives the limiting value on the left side of which equa
tion (4) is applicable for predicting the CHF. 

The fact that not only all the qco data of p,/p„ = 38.83 for 
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Fig. 5 Generalized graphic representation of qco data for R12: V: V-
regime, I: l-regime, HP: HP-regime, A: intersection between equations (1) 
and (7), B: intersection between equations (7) and (8), C: intersection be
tween equations (8) and (1) (D = 0.04 m) 

D = 0.01 m but also all the qco data of p,/pv > 67.1, except 
for the CHF in the L-regime, are predicted by equation (1), 
enables us to guess that the CHF only in the V-regime takes 
place at larger values than a certain value of p{/pv which 
would be determined by a function of D/d and 
lalpxu

2(D — d) concerning the flow state of the vapor and 
liquid on the heated surface. Figures 5 and 6 show that the 
CHF in the V- and I-regimes coexists for pt/pv < 41.25 in the 
case of D = 0.02 and 0.04 m. The qco data of D = 0.02 and 
0.04 m in this coexisting region are predicted by the smaller 
one of the values calculated from equations (1) and (7). Fur
thermore, when the ordinate value of the point B becomes 
smaller than that of the point A with decreasing density ratio 
Pi/pv, the CHF in the HP-regime appears in place of the CHF 
in the V-regime. As p,/p„ decreases, the CHF in the HP-
regime invades the CHF in the I-regime. The CHF in the HP-
regime is apt to occur in the larger diameter of the heated sur
face. It may be of interest to find out in Figs. 5 and 6 that the 

2 a / p 1 u 2 ( D - d) 

Fig. 6 Generalized graphic representation of qco data for R12: V: V-
regime, I: l-regime, HP: HP-regime, A: intersection between equations (1) 
and (7), B: intersection between equations (7) and (8), C: intersection be
tween equations (8) and (1) (D = 0.02 m) 

qco data for p,/pv = 5.29 and D = 0.02 m and for p,/pv 7.34 
and D = 0.04 m seem to be predicted by equation (8), 
although equation (8) gives the larger value than equation (7) 
in the left region of the point B. It may be of interest to note 
that the same result was reported for the CHF in forced con
vection boiling in vertical uniformly heated round tubes by 
Katto and Ohno [17] in which such a reverse occurs at p,/pv = 
6.67. 

Next, according to the estimation from the results for D = 
0.04 and 0.02 m mentioned above, the CHF for D = 0.01 m in 
the V- and I-regimes should coexist in the range of p/pv = 
18.39 to 5.29, but all the qco data except for pt/pv = 15.12 and 
8.79 fall in the CHF in the I-regime. In addition, another 
problem exists ion the way that the CHF in the HP-regime 
would take place for pt/pv = 5.29 when comparing Figs. 5, 6, 
and 7. These discrepancies should be made clear in later 
studies. As for the boundaries of the CHF in the respective 
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Fig. 7 Generalized graphic representation of qco data for R12: V: V-
regime, I: l-regime, HP: HP-regime, A: intersection between equations (1) 
and (7), B: intersection between equations (7) and (8), C: intersection be
tween equations (8) and (1) (0 = 0.01 m) 

regimes, the CHF phenomenon relates closely to the flow state 
of vapor and liquid on the heated surface, so more advanced 
study will be necessary to determine the boundaries. 

Incidentally, it may be of interest to compare equation (4) 
with the qc0 data for p/pv < 41.25. As shown by the light 
solid lines in Figs. 5, 6, and 7, equation (4) predicts the qco 

data in the V- and I-regimes including the qco data within the 
range where equation (4) cannot be applicable, with a tolerant 
agreement. In the HP-regime, however, the qco value 
calculated from equation (4), as well as its tendency, is 
significantly different from those of the qco data, so that it is 
necessary to change A(r) again. The Lienhard et al. concept 
[12, 13, 15] that the qco data are predicted by only one 
generalized correlation is interesting, but it would be rather 

difficult to elucidate its character because the CHF is related 
closely to the flow state where the CHF takes place. 

5 Conclusions 

1 The CHF in saturated forced convection boiling with an 
impinging jet was measured within the experimental range of 
the density ratio pt/pv = 5.3 to 41.25 and the reciprocal of the 
Weber number 2a/p,u2(D-d) = 2 X 10"7 to 2 X lCT3. 

2 A new type of CHF characteristic is found which is dif
ferent from two existing types of CHF in the V- and L-
regimes, and there seems to be a possibility that the new type 
of CHF can be divided into two characteristic regimes called 
the CHF in the I- and HP-regimes. 

3 The CHF data in the I- and HP-regimes are predicted by 
equations (7) and (8), respectively. 
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Two-Phase Boundary Layer 
Treatment for Subcooled Free-
Convection Film Boiling Around a 
Body of Arbitrary Shape in a 
Porous Medium 
The two-phase boundary layer theory was adopted to investigate subcooled free-
convection film boiling over a body of arbitrary shape embedded in a porous 
medium. A general similarity variable which accounts for the geometric effect on the 
boundary layer length scale was introduced to treat the problem once for all possible 
two-dimensional and axisymmetric bodies. By virtue of this generalized transforma
tion, the set of governing equations and boundary conditions for an arbitrary shape 
reduces into the one for a vertical flat plate already solved by Cheng and Verma. 
Thus, the numerical values furnished for a flat plate may readily be tranlsated for 
any particular body configuration of concern. Furthermore, an explicit Nusselt 
number expression in terms of the parameters associated with the degrees of sub-
cooling and superheating has been established upon considering physical limiting 
conditions. 

Introduction 

Parmentier (1979) studied free-convection film boiling over 
a vertical flat plate embedded in a porous medium, in terms of 
its application to dike intrusion in an aquifer. Upon tracing 
possible phase-change paths in the pressure-temperature 
diagram, he argued that a distinct, smooth interface exists be
tween the vapor film and the surrounding liquid, and ex
ploited the classical boundary layer approximations to 
simplify the problem. The effects of subcooling of the sur
rounding liquid on the boiling heat transfer characteristics 
were investigated by Cheng and Verma (1981) using the so-
called "two-phase boundary layer concept," successfully 
employed by Koh (1962) and Nishikawa and Ito (1966) for 
film boiling on a flat plate in Newtonian fluids. 

The previous studies, however, are restricted to the case of a 
flat plate. Since cylindrical and spherical shapes of canisters 
were proposed for nuclear waste disposal in subseabeds, con
siderable attention has been directed toward analyzing convec-
tive heat transfer from curved surfaces of heated bodies 
embedded in a fluid-saturated porous medium. An elegant 
similarity transformation was introduced by Merkin (1979) to 
show that a similarity solution exists for the problem of single-
phase free convection flow around a two-dimensional isother
mal body of arbitrary shape. This transformation has been ex
tended by the authors (1986) to study a more general case, 
namely, a nonisothermal body of arbitrary shape. 

In this paper, we consider the problem of subcooled free-
convection film boiling over a body of arbitrary shape within a 
porous medium. The two-phase boundary layer treatment 
commonly used in Newtonian fluid flows is invoked along 
with a general similarity transformation procedure. It will be 
shown that the governing equations and boundary conditions 
for a two-dimensional or axisymmetric isothermal body of ar
bitrary shape can be transformed into those for a vertical flat 
plate. Thus, the numerical values furnished by Cheng and Ver
ma (1981) for a flat plate are readily available for two-
dimensional and axisymmetric bodies of arbitrary shape. 

Furthermore, by considering possible physical limiting con
ditions, an effort is made to express the local Nusselt number 
explicitly in terms of the parameters associated with the 
degrees of subcooling and superheating, so that their effects 
on the heat transfer function may be appreciated more 
directly. 

Governing Equations, Boundary and Matching 
Conditions 

Figure 1 shows the physical model and its boundary layer 
coordinates (x, y). The function r{x) describes the geometry 
of a body which may be either plane or axisymmetric, and its 
wall is heated up to Tw, higher than the saturation 
temperature Ts corresponding to its system pressure. Thus, a 
thin film of vapor flowing upward forms to cover the heated 

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division October 
14, 1986. Fig. 1 Physical model and its coordinates 

Journal of Heat Transfer NOVEMBER 1987, Vol. 109/997 Copyright © 1987 by ASME
  Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



body surface. Since the surrounding liquid is subcooled to its 
temperature Te (<TS<TW), a liquid boundary layer also 
develops adjacent to the liquid-vapor interface due to a 
buoyancy force. Radiation effects are assumed to be 
negligible. 

With the usual boundary layer and Boussinesq approxima
tions, the set of governing equations, namely, the continuity 
equation, Darcy's law, and the energy equation may be given 
for each phase as follows: 

For the vapor in the porous medium (0 < y < 8): 

and 

d d 
—— r*u + — r*v = 0 
dx dy 

(Pf-P)K 
w = — gx 

pv 

dT oT d2T 
u l-D^—= a ——r 

dx dy ay1 

For the liquid in the porous medium (y > 5): 

d d 
r*u-\ r*v = 0 

dx dy 

P(T-Te)K 
" = Sx 

and 

where 

and 

dT dT 
— +v -r— = a 

dx dy 

d2T 

Hy2 

1 : plane flow 

r(x): axisymmetric flow 

dr 

-«[ ' - ( ! ) ] 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7a) 

(76) 

(8a,6) 

(8c) 

The boundary conditions are given by 

y = 0: v = 0, T=TW 

j> -oo : M = 0 (T=Te) 

The matching conditions at the l iquid-vapor interface (y — 8) 
are given by 

T=TS (9a) 

( db \ ( dd \ 
P\U^x-V)=P\U^x--V)j m 

and 

, / dd \ , oT (dT\ 
hAU^x-V) = -k^+kA-dy-) (9c) 

where equations (9a), (9b), and (9c) represent the continuity of 
temperature, conservation of mass, and energy balance at the 
l iquid-vapor interface, respectively. In the preceding equa
tions, u and v are the Darcian velocity components in the x 
and y directions and T i s the local temperature. The tangential 
component of the acceleration due to gravity g is indicated by 
gx, which is related to the local surface inclination by equation 
(7b). Fur thermore , K is the permeability; k, the equivalent 
thermal conductivity; v, the kinematic viscosity; a, the 
equivalent thermal diffusivity. The subscript / denotes the 
quantities associated with the surrounding liquid, while no 
subscript is assigned for the vapor phase. hfg is the latent heat 
of vaporization. 

Similarity Transformation and Solution 

Let us introduce the stream function i/> such that the con
tinuity equation (1) may automatically be satisfied 

1 di 

1 d\P 

Tr~dx~ 

(10a) 

(106) 

Merkin (1979) introduced a similarity transformation for the 
single-phase problem of free convection in a porous medium. 
His t ransformation has been generalized by the authors (1986) 
for the case of a nonisothermal body of arbitrary shape. These 
transformations may be extended to the two-phase flow 
problem of the present concern as 

i, = ar*(RaxI)"
2f(v) (11a) 

T-Ts=d(V)(Tw-Ts) 

r , = ^ ( R a x / / ) ' 

(116) 

(lie) 

where equations (11a), (116), and (lie) define/, 0, and r/, 
respectively, and 

Rav 
Kgxx(pf-p) 

/(*)=-

vap 

gxr*2dx 

gxr*2x 

(12a) 

(126) 

N o m e n c l a t u r e 

/ = dimensionless stream 
function 

g = acceleration due to gravity 
hjg = latent heat of vaporization 

/ = function associated with a 
body geometry 

k = equivalent thermal conduc
tivity weighted by the 
porosity 

K = permeability 
Nu x = local Nusselt number 

q„ = local surface heat flux 
r = function representing wall 

geometry 

r* = 1 for plane flow; r for 
axisymmetric flow 

Ra x = local Rayleigh number 
T = temperature 

u, v = Darcian velocity components 
x, y = boundary layer coordinates 

a = thermal diffusivity 
k/(pCp)nm 

/3 = coefficient of thermal 
expansion 

7 = ratio of a horizontal axis to 
a vertical axis 

i? = similarity variable 
6 = dimensionless temperature 
v = kinematic viscosity 
p = density 
\p = stream function 

Subscripts 

e 
f 
r 
s 
w 
x 

external 
liquid 
reference 
saturation 
wall 
local 
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R 3 . is the local Rayleigh number and r\ is the proposed 
similarity variable. The function / as defined by equation 
(126) adjusts the scale in the normal direction according to a 
given body geometry. 

In terms of these transformed variables, the Darcian 
velocities in the vapor layer are 

= ^ R a ^ ' (13a) 

and 

. - r^-K'^-r )" - - ! - ' ] <•»> 
where the primes denote differentiation with respect to -q. 
Substitution of equation (13a) into equation (2) yields 

/ ' = 1 (14a) 

This may readily be integrated as 

f=V (146) 

using the boundary condition 

/(0) = 0 (14c) 

which is equivalent to equation (8a) with (136) substituted in
to it. 

The preceding results may be substituted into the energy 
equation (3). After considerable manipulation, we obtain a 
remarkably simple expression 

— 770 = 0 (15) <?"+-

The foregoing equation is subject to the boundary conditions, 
namely, 

6(0) = 1 (16a) 
and 

0(i/«)=O (166) 

which are equivalent to equations (8b) and (8c), respectively. 
The preceding equation (15) with equations (16) has the exact 
solution given by 

where 

6(r,) = l -

Vs: 

erf(ij/2) 

crf(ijj/2) 

-(Rax/I) 1/2 

(17) 

(18) 

The unknown dimensionless vapor thickness TJ6 must be 
determined in consideration of the liquid boundary layer 
covering the vapor film. The continuity equation (4) for the 
liquid layer may readily be satisfied as we introduce the stream 
function \p as defined by equations (10). For the liquid layer, 
the following transformations similar to those adopted for the 
vapor layer are employed: 

t = afr*(Rax/iy%(V/) 

T-Te=Bf(r,f)(Ts-Te) 

, / = _^_(Rav//)>/2 

(19a) 

(196) 

(19c) 

where equations (19a), (196), and (19c) define//, 6f, and r,f, 
respectively, and 

R a x / -
Kj3(Ts~Te)gxx 

(20) 

Upon substituting equation (19a) into equations (10), we 
obtain 

af 
« = — Ra^Ff (21a) 

and 

t,= — ^ ( R a y / ) 1 / 2 

[(>*3£~rW>*-T'i ™ 
The primes here indicate differentiation with respect to ri/. 
Using equations (21a) and (196), the Darcy's law given by 
equation (5) may be transformed into 

f}=ef (22) 

These expressions may be substituted into the energy equation 
(6). After some manipulation, the energy equation may be 
reduced to 

//"+4-////=0 (23) 

The boundary condition (8c) and the matching condition (9a) 
may be rewritten as 

/ / ( « ) = 0 (24a) 

//0?/«) = l (246) 
where 

and 

Vfs -(Rax//7) 1/2 "t- <xvpP(Ts-Te) 1/2 

Vs (24c) 
x •- L afvf(pf-p) 

The matching condition for the mass flux given by equation 
(96) may also be rearranged in a similar fashion. By 
substituting equations (13), (18), (21), and (24c) into (96), we 
have 

(25a) 

where 

R-
pa. 

ff(v/t,)=Ry& 

QtfVf(Pf-p) \ 1/: 

(256) 
PfCij- \ oivpP(Ts-Te) 

is related to the ratio of the vaporization mass to the liquid 
mass entrained within the liquid boundary layer. The last 
matching condition (9c) may be transformed by substituting 
equation (17) as 

r- l~?7;<i Sub" 
Sup = v r exp(itf /4)erf(r,s/2)[-f-f/(r,/s)- R 

(26a) 

where 

and 

Sup = Cp(Tw-Ts)/h/g (266) 

Sub = CPf(Ts-Te)/hfg (26c) 

It should be noted that the resulting set of equations, namely, 
equations (23), (24a), (246), (25a), and (26a), is identical to 
that obtained by Cheng and Verma (1981) for the specific case 
of a vertical flat plate. Thus, the numerical calculation results 
furnished by them are directly applicable for any two-
dimensional or axisymmetric shape of concern. 

In principle, the differential equation (23) may be solved for 
a given set of parameters, namely, Sub, Sup, and R. The 
dimensionless vapor thickenss r\&, however, enters into the 
boundary condition (25a) and the matching condition (26a) 
which is implicit in r?6. (Note th&tfj (17/5) appearing in equa
tion (26a) is also a function of TJ8 .) Such an approach will re
quire some kind of an iterative procedure. Cheng and Verma 
employed an inverse method in which they determined Sup 
from equation (26a) after integrating equation (23) for given 
Sub, R, and ij5 (instead of Sup). It is also interesting to note, 
when integrating equation (23), we may conveniently set 17̂  = 
0, since the value of rj^ does not enter into either the differen
tial equation or the boundary conditions. 

Local Nusselt Number and Wall Heat Flux 

Once the dimensionless vapor film thickness rj6 is known in 
this way, the local Nusselt number of interest can be evaluated 
from 
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N u , = - qKx 

k(Tw-Ts) 
l'(0)(Rax/I)> 

(Ra^//)1/2 

VT erf(i;6/2) 
(27) 

where qw is the wall heat flux. 
By virtue of the proposed transformation, the results on a 

vertical flat plate can be translated to any particular two-
dimensional or axisymmetric body of arbitrary shape. This 
can be done by evaluating the function / for the given 
geometry. For example, in the cases of flat plates, vertical 
cones, horizontal ellipses, and ellipsoids (including a horizon
tal circular cylinder and a sphere), we evaluate / according to 
its definition given by equation (12b) as 

1: vertical plates 

3: vertical cones pointing downward 

(x/Lr)s'm <f> 

(1-cos <£)(sin2(/>-l-Y2cos2</>)1/2 

horizontal ellipses 

3(x/Lr)sini 

(cos3</>-3 cos </> + 2)(sin20 + 72cos2<£)1/2 

ellipsoids 

where 

and 

<j> = sm l(r(x)/yLr) 

x/Lr=\ (sin2</> + Y2cos2</>)1/2<# 

(28fo) 

(28c) 

(28d) 

(29a) 

(29b) 

The lower (front) and upper (rear) stagnation points are 
located at 4> = 0 and w, respectively. The symbol Lr denotes 
reference lengths such as a plate height and a vertical semi-axis 
of an ellipse or an ellipsoid, while y stands for the ratio of a 
horizontal axis to a vertical axis. 

Subsequently, the local surface heat flux may be given by 

<T = 

(x/Lr)~
ln: vertical plates (30a) 

(x/3Lr)
 1/2: vertical cones pointing downward 

(306) 

sin </> 
[(1-cos 4>)(sin2(/> + Y2cos20)]1/2 ' 

: horizontal ellipses (30c) 

sin2$ 

(—— cos3$-cos</> + ——J(sin20-l-72cos20) 

: ellipsoids 

where 

- ( -
qwLr 

•H 
K(pf-p)gLr 

-d'(0)] 

(30d) 

(31) 
(T„-Ts)k/ \ pav 

The dimensionless heat flux q* does not depend on any of the 
three parameters, Sup, Sub, or R. (These parameters, of 
course, change the value of d'(0).) Naturally, the q* distribu
tion is the same as for the case of a saturated liquid (i.e., Sub 
= 0). It is interesting to note that the resulting heat flux 
distributions (given by equations (30)) are similar to those 

reported in our previous work (Nakayama and Koyama, 1987) 
on the single-phase free convection in a porous medium. 
Equations (30c) and (30c?) indicate that q* for a small 7 (i.e., a 

slender body) exhibits a pattern similar to that of a vertical flat 
plate or cone (as given by equations (30a) and (30b)). For a 
large 7 (i.e., a flat body), on the other hand, q* increases away 
from the front stagnation point, attains a maximum as the 
flow accelerates due to a significant streamwise increase in g 
but, as the boundary layer grows thick, it decreases 
downstream, resulting in a nonmonotonic variation of the 
wall heat flux. 

(28a) Asymptotic Results and an Approximate Formula 

The expression for the local Nusselt number given by equa
tion (27) is still formidable to use, since the dimensionless 
vapor film thickness i)s is a complex function of the three 
parameters, Sub, Sup, and R. Although we may appeal to the 
inverse method as suggested by Cheng and Verma, a lengthy 
calculation procedure will be required to find -qs for a given set 
of parameters. In the following, we shall establish an approx
imate expression for the local Nusselt number by considering 
possible physical limiting conditions. The resulting approx
imate formula will be quite accurate, and more accessible to 
practical heat transfer evaluations. 

Let us approximate equation (25a) as 

//(>»/«) = ° (32) 

The preceding approximation, namely, setting the stream 
function at the interface to zero, may be justified when the 
vapor film is sufficiently thin that the mass flowing within the 
vapor layer is not significantly large. We can integrate equa
tion (23) using equation (32) instead of equation (25a) to 
obtain 

ff(V/t)= -0.444 

Upon substituting this value into equation (26a) 

SubN 
+ 0.444 

2 
Sup = v r exp(r,^/4)erf(r)6/2) (^- + 0.444 — ) 

V 2 R ' 

(33) 

(34) 

Now, ?)6 depends on only two parameters, namely, Sup and 
the lumped parameter Sub/i?, which is closely related to the 
ratio of the subcooled energy to the vaporization energy. 

In Figs. 2, the r?6 curves generated by equation (34) are com
pared with those based on the exact solution. As may be seen 
from Fig. 2(a), the preceding approximation results in very lit
tle loss of accuracy for the case of small R. (Note that the ap
proximation given by equation (32) becomes exact as R — 0.) 
Even for the case of comparatively large R, namely, R = 
1.414 (as shown in Fig. 2(b)), the approximation leads to a 
reasonable estimate of TJ{ for a wide range of Sup. An error 
due to this approximation amounts to only 6 percent at Sup = 
40. Equation (26a) also indicates that the approximate and ex
act curves becomes identical for Sub = 0, irrespective of the 
value of R. (It should be relevant to note that, for small Sup, 
film boiling might give over to transition or nucleate boiling.) 

The corresponding heat transfer grouping Nux/(Rax/I)
w2 is 

plotted in Fig. 3(a) for small R and Fig. 3(b) for large R, 
respectively. Both figures show excellent agreement between 
the curves based on the preceding approximation and those 
from the exact solution. As might be expected, the increase in 
the degree of liquid subcooling, Sub, results in thinning the 
vapor film, hence increasing the level of the heat transfer 
grouping. The foregoing comparison substantiates that only 
the two parameters, namely, Sup and Sub/7?, essentially deter
mine the local heat transfer rate. 

Although a great simplification has been made in equation 
(34), the equation is still implicit in •qi, and requires some 
iteration if we are to determine r/s for given Sup and Sub/R- In 
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Fig. 4 Comparison of approximate formula and exact solution 
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Fig. 2 Dimensionless vapor film thickness: (a) small R, (b) large R 

2,8 

2,0 

1.2 

0,1 

1 
•1 \ 

\ \̂ \̂ 

Sub = 0 

Sub 
^ 0 . 1 5 

^ - 0 , 3 

^ 0 , 5 

1 

Exact soln. 

f f ' ( 0 ) = -0,111 

R 
0,129 

0,0913 
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Fig. 3 ( a ) 

• — Exact soln, 

f f ( 0 ) = -0,111 

Sup 

Fig, 3 ( b ) 

Fig. 3 Local Nusselt number: (a) small R, (b) large R 

order to obtain an explicit expression in terms of Sup and 
Sub/R, we consider two physical limiting conditions, namely, 
TJ4 — 0 and ij6 — oo. Under these two limiting conditions, 
equation (27) yields 

Nu.ARa, / / ) 1 
f l / i j j for T J J - 0 

tl/V^r for rya — oo 

(35a) 

(356) 

The dimensionless vapor film thickness ij6 appearing in equa
tion (35a) must be eliminated as follows. Expansion of equa
tion (34) around ij4 = 0 yields a quadratic equation in terms of 
ijj which can readily be solved as 

r / S u b \ 2 1 1/2 Sub 
r/4 = 2 Sup + (0.444 J - 0 . 4 4 4 ^ - (36) R 

In order to obtain a general expression valid for all range of 
T)J, we match the two asymptotic results using the procedure 
proposed by Churchill and Usagi (1972) 

Nux/(Rax/I)
W2 = U +U J (37) 

We set m = 2 which gives a close agreement between the ap
proximate formula and the exact solution especially for the 
case of no subcooling, Sub = 0. (This value was proposed by 
Cheng (1981) when he matched the asymptotic results in the 
study of film condensation on a vertical plate in a porous 
medium.) Hence, we finally have 

Nu x / (Ra x /7) 1 / 2 

1 

[Y2Sup+(o. 444 
Suby 
R 

-0.444 
Sub 

(38) 

The curves based on the preceding explicit formula are 
presented in Fig. 4 along with those based on the exact solu
tion, so as to substantiate the validity of the proposed expres
sion. An attempt to verify the validity of the present analysis 
through comparison with experimental data has to be aban
doned, since there are at present no experimental data 
available for film boiling within a saturated porous medium. 

Conclusions 

The problem of subcooled free-convection film boiling over 
a body of arbitrary shape in a porous medium has been 
analyzed by means of the two-phase boundary layer treat
ment. A general similarity transformation has been proposed 
to account for the geometric effect on the development of the 
two-phase boundary layer. It has been shown that, when the 
similarity variable is chosen carefully, the resulting set of 
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transformed differential equations, the boundary and 
matching conditions for an arbitrary shape can be reduced to 
the same as those for a vertical flat plate. Thus, the previous 
results obtained by Cheng and Verma for a flat plate may 
readily be translated to any particular geometry of concern. 

An effort has been also made to establish an approximate 
formula which is more accessible for practical applications, in 
the sense that the heat transfer function is expressed explicitly 
in terms of the two parameters associated with the degrees of 
subcooling and superheating. 
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Drag Coefficients Associated With 
a Moving Drop Experiencing 
Condensation 
For a moving liquid drop experiencing condensation, three different drag coeffi
cients govern the motion and the transport. These coefficients are associated with 
friction, pressure, and condensation. Unlike situations involving the motion of a 
rigid sphere or a liquid drop without the presence of condensation, there is a large 
pressure recovery in the rear of a moving drop experiencing condensation. As a con
sequence, the pressure drag coefficient exhibits interesting behavior. While the coef
ficients for the friction drag and the condensation drag increase with the level of 
condensation, the pressure drag coefficient decreases rapidly. In this note, the roles 
played by the various drag forces in condensing situations are delineated. Results for 
the variation of average condensation heat transfer with vertical-fall height of the 
drop are presented. 

1 Introduction 

Condensation on a spray of drops occurs in a wide variety 
of physical situations. For example, the emergency cooling 
sprays of nuclear reactors, air-conditioning humidifiers, direct 
contact condensers in thermal power plants, atmospheric 
studies of raindrop growth etc., involve condensation on mov
ing drops. The intent of this paper is to discuss the 
hydrodynamics and the transport phenomena associated with 
condensation on a single moving drop. Specifically, this paper 
will concern itself with the drag phenomena associated with a 
translating drop that experiences condensation. 

There are many studies in the literature that involve heat 
and mass transfer and/or hydrodynamics of drop motion 
(Clift et al., 1978). Specifically, with regard to condensation 
on drops, stationary drops have been studied by Jacobs and 
Cook (1978). The growth rate of a water drop in a pure steam 
environment has been experimentally investigated by Ford and 
Lekic (1973). The condensation heat transfer rates for droplets 
moving in air-steam mixtures have been predicted using 
standard heat transfer correlations by (Kulic et al., 1975). In 
Kulic and Rhodes (1977), the authors have provided the ex
perimentally recorded temperature-time history of a water 
drop experiencing condensation in a forced flow of steam and 
air. Condensation on slowly moving drops has been 
theoretically examined by Sadhal and Ayyaswamy (1983) and 
by Chung et al. (1984a, b). Condensation on a drop in high 
Reynolds number motion has been investigated by Chung and 
Ayyaswamy (1981a, b). Results for quasi-steady condensation 
heat and mass transfer appropriate to the intermediate 
Reynolds number range of drop motion are given by Sun-
dararajan and Ayyaswamy (1984, 1985a). A hybrid finite-
diffcrence scheme that is suitable for solving condensation 
problems associated with a single moving drop has been 
described by Sundararajan and Ayyaswamy (1985b). In many 
industrial design calculations of heat and mass transfer related 
to moving drops experiencing condensation, the drag coeffi
cient applicable to a rigid sphere motion is simply employed. It 
is shown in this paper that such an assumption may be inap
propriate and may provide erroneous results. 

2 Physical Description 

Consider the introduction of a cold water drop of radius R0 

Contributed by the Heat Transfer Division and presented at the Winter An
nual Meeting, Anaheim, California December 7-12, 1986. Manuscript received 
by the Heat Transfer Division May 6, 1986. Paper No. 86-WA/HT-39. 

Fig. 1 Geometry of the problem 

and initial bulk temperature T0 into an environment consisting 
of a mixture of vapor (steam) and a noncondensable (air). The 
droplet is projected with an initial velocity U0 and at an angle 
/30 with respect to the vertical direction (Fig. 1). The total 
pressure p„ and temperature T„ of the saturated mixture in 
the drop environment are taken to be prescribed. The drop is 
colder than its environment (Ta < T„) and condensation oc
curs on the drop surface. 

Let the instantaneous translational velocity of the drop be 
U„. We consider a coordinate frame that coincides with the 
drop center and moves with this instantaneous velocity U^ 
(Fig. 1). The instantaneous gaseous-phase Reynolds number 
of translation (hereinafter referred to as Rê  = UJlR/vg) is 
taken to be 0(100), but less than, say, 500. We note that in 
many condenser designs, Re^ may be in the range of 
1000-1500. For Reg > 500 flow instabilities such as drop 
oscillations and vortex shedding are known to occur. In this 
note the drop deformation due both to inertial effects (Weber 
number We) and to hydrostatic-pressure variation (Eotvos 
number Eo) are assumed to be small. We consider water drops 
of size 1 mm diameter or less (Eo < 0.4 and We < 0.3). We 
note that in many condenser designs, drops of larger sizes may 
have to be considered. 
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Condensation causes a radially inward flow toward the drop 
surface. The nonzero mass flux at the interface alters the 
translational flow field and modifies the drag on the drop. 
Three different drag coefficients govern the motion and the 
transport. These coefficients are associated with friction, 
pressure, and condensation. The total drag coefficient which 
is the sum of the three coefficients may increase or decrease 
depending on the prevailing conditions (Reynolds number Reg 

and the condensation parameter W, which represents the ther
modynamic description). A correct assessment of the total 
drag coefficient is not only needed to establish the trajectory 
and the instantaneous Reynolds number for motion, but also 
to evaluate the transport rates accurately. Such accurate 
evaluations of transport rates are important in the design of 
direct-contact heat and mass transfer equipment. 

3 Drag Coefficients 

For a moving liquid drop experiencing condensation, the in
stantaneous total drag coefficient 

D,=Dp+Df + Dc (3) 

where Dp, Dj, and Dc are the pressure-drag, friction-drag and 
condensation-drag coefficients, respectively (Sundararajan 
and Ayyaswamy, 1984). The pressure drag coefficient is 

!

7T 

o # * 
sin 20 dd (4) 

(5) 

where the dimensionless pressure is 

„ , {PtAB)-Po,) 
Ps-s v2Pgm 

The surface pressure profile is given by pgjS(0). The friction 
drag coefficient is defined by 

la* sin 0 - 2 — ^ L cos 0) sin 0 dd (6) 
Jo \ dr* lr =i / 

D f~ Re„ 

In equation (6), the dimensionless surface shear stress a* and 
radius r* are 

Fig. 2 Variation of Reg, Df, Dp , Dc and D ( with time: p „ = 300 kPa, T0 

= 37°C, /30 = 0.0 deg, TM = 120°C, R0 = 250 )im, W0 = 0.54, U0 = 3.0 
m/s, Reg0 = 66 

and r* = r/R 
HgU„/R 

The surface shear stress a itself may be expressed as 

a = /ig[r 
d ugtB 1 dugf 

i = n.,\r- — + -
or r r 3d 

J \r = R 

(7) 

(8) 

In equations (6) and (8), the r and 0 components of the mass 
average velocity ug for the binary mixture of air and water 
vapor are represented by ugJ. and ug%e, respectively. These are 
scaled by U„ to get u*<r and M*>9. 

The condensation drag Dc arises owing to the momentum 
associated with the radial flow and is given by 

^ = 4So ["* cos 0 — lit sin 0 u* sin 0 dd (9) 

The dimensionless condensation velocity u* and the surface 
velocity «J are 

u* = ulr\r* = l and u% = u*e Ir* = , (10) 

N o m e n c l a t u r e 

D 
Dl2 

e 
Eo 

g 
H 

J 
k 

mx 

Pa> 

r 
R 
R 

Ra, ~ 

Re 
/ 

T 

drag coefficient 
binary diffusion coefficient 
unit vector 
Eotvos number = gApD2/a 
gravitational acceleration 
vertical fall height 
unit vector in x direction 
unit vector in y direction 
thermal conductivity 
noncondensable mass 
fraction 
far-stream pressure 
dimensionless surface heat 
flux = qR/pgag\ 
radial coordinate 
radius of the drop 
dimensionless rate of change 
of drop radius (scaled by 
UJ 
radius of the outer bound
ary in the numerical 
calculation 
Reynolds number = U„D/v 
time 
temperature 
instantaneous bulk 
temperature of the drop 

Ts = surface temperature of the 
drop 

u = velocity 
uc = dimensionless condensation 

velocity 
uc = dimensionless condensation 

velocity at the drop surface 
scaled by Dn/2R 

U0 = initial velocity of drop 
UK = far-stream translational 

velocity 
ur, ue = velocity components 

wl = normalized mass fraction 
W = condensation parameter = 

l-w1 | O 0 / /«1 > s 

We = Weber number = 2pRUl,/o 
z = transformed radial coor

dinate = In r 
a = thermal diffusivity 
j8 = instantaneous angle of drop 

trajectory 
Ap = density difference between 

drop and gaseous phase 
AT = Tm-T 

6 = polar angle 
6b = dimensionless bulk 

temperature 

X = 
)>• = 

v = 
P = 
a = 

4> = 
Subscript. 

av = 
c = 
/ = 
g = 
h = 
I = 

m = 
P = 
s = 
t = 
v = 
0 = 

1 = 
00 = 

latent heat of condensation 
dynamic viscosity 
kinematic viscosity 
density 
surface tension 
azimuthal angle 

s 

average 
condensation 
friction 
gas phase 
horizontal 
liquid phase 
mass transfer 
pressure 
drop surface 
thermal, total 
vertical 
at initial time; stagnant 
drop 
noncondensable 
far-stream 

Superscripts 

= 
* 

average 
dimensionless quantity 
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Fig. 3 Effect of condensation on the surface pressure profile: RQ = 
250 iim, 0O = 0.0 deg 

The gas-phase equations, the liquid-phase equations, and 
the applicable initial and boundary conditions are given by 
Huang and Ayyaswamy (1987a) and will not be repeated here 
for the sake of brevity. The details of the numerical procedure 
are available from Sundararajan and Ayyaswamy (1985b) and 
Huang and Ayyaswamy (1987b). 

4 Results and Discussion 

Figure 2 shows the temporal variations of Reg, Dp Dc, Dp, 
and D, for a moving liquid drop experiencing condensation. 
For the parameters considered (note in particular, R0 = 250 
/un), Reg first decreases in the immediate period following the 
introduction, then significantly increases. This rapid increase 
is followed by a gradual rate of increase until thermal 
equilibrium with the outside environment is achieved (conden
sation ceases). Beyond thermalization, the drop would 
translate at a fixed Reg (constant terminal velocity). The 
dependence of Reg on t may be explained as follows. Im
mediately upon introduction, the drop experiences vigorous 
condensation (large W, large A 7"). The vigorous condensation 
results in high values for the shear stress and momentum of 
the radial flow. Thus, the friction-drag coefficient Dj and the 
condensation drag coefficient Dc are high. However, there is a 
very large pressure recovery in the rear of the drop (the 
pressure-recovery feature is explained later by reference to the 
pressure profile at the drop surface in Fig. 3). The pressure-
drag coefficient Dp is negative and large. With increasing 
time, the strength of the condensation field decreases and Dj 
and Dc decrease correspondingly. There is a lesser pressure 
recovery and a steep increase in Dp, and its influence on D, is 
dominant. The total drag coefficient Dn which is the sum of 
the three coefficients, increases in the period following in
troduction. There is a corresponding drop deceleration and 
Reg decreases. A small size drop such as the one under con
sideration has a relatively lower heat capacity and its bulk and 
surface temperatures increase rapidly. The thermal driving 
force for condensation is reduced and the associated field 
strength weakens beyond this period. The Df decreases with a 
steeper gradient and its influence on D is dominant. Thus, D, 
decreases and U^it) increases, i.e., the drop accelerates. A 
rapid increase in Res is noted. Eventually as the drop ap
proaches thermal equilibrium with the outside, the pressure 
recovery is minimal and the Dp D,, and the corresponding Re^ 
are all essentially constant. 

Figure 3 shows the gaseous-phase pressure profile at the 
drop surface. The profile changes drastically with condensa
tion. The extent of condensation is characterized by W, the 
condensation parameter, given by l-(ml>a,/ml>s). This 
parameter is a function of the thermodynamic conditions p„, 
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Fig. 4 Influence of condensation on drag coefficients 
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Fig. 5 The variation of (Rea(t)IRe„Q) and D, with time for drops of 
various sizes: p„ = 300 kPa, T„ = S7°C,pQ = 0.0 deg, T „ = 110°C, W0 

= 0.35 

Ta, Ts, and varies from 0 to 1. The limit zero corresponds to a 
noncondensing situation and W = 1 to a pure-vapor environ
ment. Recall that, for flow around liquid (solid) spheres, in 
the absence of condensation, there is very little pressure 
recovery in the rear. With condensation, however, there is a 
large pressure recovery, and the pressure profile is 
predominantly determined from a balance between the dif
fusive and convective transports of vorticity. For a non-
condensing situation, the diffusion of vorticity away from the 
drop causes pressure loss in the rear. With condensation the 
radially inward flow counters this outward diffusion of vor
ticity. The pressure-drag coefficient Dp thus decreases with in
creasing level of condensation. 

The variations in the drag coefficients with increasing con
densation (W increasing) are shown in Fig. 4. For given ther
modynamic conditions, large values of W correspond to the 
immediate period following the introduction of the drop onto 
the condensing environment. The pressure-drag variation 
becomes important at larger PI7(vigorous condensation), while 
Dj variation is important at lower values. The condensation 
drag needs consideration at lower Reg or high W. 

In Fig. 5, the changes in drop-motion during condensation 
are examined by plotting Re g (0 /Re g 0 with time for various 
initial drop sizes. It is seen from the figure that for given pa, 
T„, and T0, a small drop (R0 = 250 ^m) accelerates with time, 
a large drop (R0 = 300 /xm) decelerates, while a drop of in-
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Fig. 6 Comparisons of the variations in Reg and D, with time: p „ 
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Fig. 7 The variation of q with time: p „ = 300 kPa, T0 = 37"C, /30 = 0.0 
deg, T„ = 120°C, IV0 = 0.54, l/0 = 10.0 m/s 

termediate size (R0 = 300 jum) decelerates in the immediate 
transient period following introduction and then accelerates. 
These interesting trends may be understood by a careful ex
amination of the drag behavior in the presence of condensa
tion. For a large drop, D, increases with time because Dp in
creases with decreasing W, although Dj andZ)c decrease. As a 
result, the drop decelerates. For a small drop, the friction drag 
dominates the variation in D,, when AT0 is sufficiently small. 
For a drop of intermediate size, in the transient period follow
ing the introduction when W is decreasing rapidly, D, in
creases due to an increase in Dp. For later times, with smaller 
W, D, decreases due to the decrease in Df (reduced shear 
stress). Such a drag behavior leads to an initial deceleration 
and a subsequent acceleration of the drop. It is also noted 
from the figure that there is a rapid deceleration of a large 
drop in the immediate transient period following introduction, 
whereas the acceleration of a small drop occurs almost 
uniformly throughout the condensation period. These trends 
are explained by noting that while the variation in Dp is impor
tant for large W, the variation in Dj is significant even at low 
values of W. 

In Figs. 6 and 7, the importance of correctly estimating the 
drag coefficient values in condensation calculations is il
lustrated and emphasized. Depending on the assumptions 

made, the predictions of variations of Reg and D, with time 
are seen to be very different in Fig. 6. The drag coefficient for 
a rigid sphere used in our calculations is given by Clift and 
Gauvin (Clift et al., 1978). In Fig. 7, the average condensation 
heat transfer q (= 0.5 J <7 sin f? dd) to drops of various sizes is 
predicted as functions of vertical fall height H. The predic
tions are made based both on the present development and on 
the assumption that the drag coefficient appropriate to a rigid 
sphere may be used in the calculation procedure. The latter 
assumption is often invoked in many industrial design calcula
tions. The predicted fall heights are seen to be significantly 
different. The differences are particularly noteworthy in the 
design of scrubbers and containment spay systems of nuclear 
reactors (Huang and Ayyaswamy, 1987b). 

5 Conclusions 

For a moving liquid drop experiencing condensation, three 
different drag coefficients govern the motion and the 
transport. These coefficients are associated with friction, 
pressure, and condensation. In particular, the pressure drag 
coefficient exhibits interesting behavior as a consequence of 
the large pressure recovery in the rear of the drop. The total 
drag coefficient may increase or decrease depending on the 
prevailing conditions (Reynolds number Reg and condensa
tion parameter W). By simply employing the drag coefficient 
appropriate for a rigid sphere in design calculations involving 
moving drops experiencing condensation, serious errors may 
be committed (Huang and Ayyaswamy, 1987b). 
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Artificial Transformation of the 
Direct-Contact Condensation 
Pattern of Steam Bubbles in a 
Hydrophobic Liquid Medium 
When steam bubbles are released into a medium of a hydrophobic coolant, the con
densate is scattered through the coolant in the form of tiny droplets. This condensa
tion pattern is unfavorable for direct-contact condensers because it is difficult to 
separate the condensate and the coolant. This paper proposes a novel bubble-release 
device by which the condensation pattern is so transformed that the condensate re
mains within the confines of the bubble wall. An experimental examination with 
single steam bubbles released into a medium of liquid paraffin is demonstrated. 

Introduction 

The process of condensation of vapor bubbles in a medium 
consisting of an immiscible, less-volatile liquid has been 
studied in the last two decades by several researchers. Exten
sive surveys on these studies are given by Sideman and 
Moalem-Maron [1] and by Sudhoff et al. [2]. Fluids used or 
implicitly assumed in most of these studies are water as the 
coolant and a light hydrocarbon as the condensing fluid to be 
dispersed in the coolant. The selection of such a fluid com
bination is consistent with potential applicability of the direct-
contact condensers to water desalination or geothermal heat 
recovery systems. Other applications are also conceivable 
wherein various combinations of working fluid and coolant 
are possible. The particular interest in the present study is in 
the combination of steam and a hydrophobic oil, the former 
being released into a medium of the latter for the purpose of 
water recovery and/or heating the oil. 

When a bubble of a light hydrocarbon vapor condenses in 
water, a condensate accumulates in the confines of the bubble 
wall, thus forming a stable two-phase vapor/condensate bub
ble [1], This condensation pattern prevails as long as the con
densate wets the bubble wall relatively well. If the condensate 
does not wet the bubble wall well, the condensate does not 
always stay in the bubble throughout the condensation pro
cess; this is the case which is typified by steam bubbles con
densing in a hydrophobic oil. Higeta et al. [3] reported that 
when a steam bubble condensed in a medium of silicone oil 
which was highly hydrophobic, tiny droplets of the condensate 
detached themselves continuously from the bubble into the 
silicone oil, resulting in the formation of a wake of emulsion 
behind the bubble. This condensation pattern is unfavorable 
for practical condensers because of the difficulty in separating 
the condensate arid the medium liquid (coolant). This paper 
proposes a technique of transforming the condensation pat
tern into a completely different one in which the condensate 
remains within the confines of the bubble wall even if the 
medium liquid is highly repellent to the condensate. The basic 
idea is described below. 

In a medium of hydrophobic oil, two-phase steam/water 
bubbles of any configuration are unstable [4, 5]. However, 
this fact does not exclude the possibility of two-phase bubbles 
being formed tentatively. In fact, Shimada et al. [6] observed 
the formation of two-phase steam/water bubbles in a liquid-
paraffin layer superposed on a water layer wherein nucleate 

Coolant 
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Fig. 1 Outline of a possible design of direct-contact condenser 

boiling occurs. Mercier et al. [7] also reported that an air bub
ble released in a water layer underlying a mineral oil layer 
penetrated into the mineral oil layer entraining some amount 
of water with it. Taking a hint from these studies the author 
has thought out a device as illustrated in Fig. 1. Steam bubbles 
are released not directly into a hydrophobic coolant but into a 
water layer which covers outlets of the steam distributor. Each 
steam bubble breaks through the water/coolant interface and 
rises in the coolant phase while encapsulated in a water shell. 
Although such a two-phase bubble is unstable, it does not 
disintegrate until the water film at the top portion of the bub
ble thins enough to rupture as the result of draining of water 
toward the lower part of the bubble. It is expected that the 
condensation completes within the confines of the water shell 
before it ruptures. If this is the case, each steam bubble turns 
into a water drop, which falls through the coolant phase due 
to density difference and then coalesces with the water layer 
covering the steam distributor. This idea has been examined 
experimentally with single steam bubbles condensing in a stag
nant medium of liquid paraffin. 

Experimental 
Experiments were so designed that single steam bubbles 
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Table 1 
at95°C 

Some properties of water-saturated liquid paraffin 

Aluminum plate 
with heating wire 
imbeded 

Thermocouple 

Liquid paraffin 

Paraffin-water 
interface 

Dumping cup 

Heating wire 

Water 

From water 
reservoir 

Drain 
Drain 

Fig. 2 Schematic of apparatus II 

generated in a liquid water phase underlying a liquid paraffin 
phase broke into the paraffin phase entraining some amount 
of water. In order to make the experimental conditions simple 
and well-specified, some efforts were made to maintain the 
water adjacent to the paraffin/water interface at almost its 
saturation temperature and simultaneously to keep a uniform 
temperature in the bulk of liquid paraffin wherein bubbles 
would condense. 

Figure 2 illustrates one of the two apparatus used in this 
study. We call it apparatus II hereafter. It consisted of three 
portions: the lower column containing water, the intermediate 
column in which the paraffin/water interface situated, and the 
upper column containing liquid paraffin. The lower column 
was designed as a Pyrex glass tube to minimize undesired 
steam-bubble generation on the column wall while the bulk of 
water in the column was heated up to the saturation 
temperature or even slightly above it. The intermediate col
umn was a transparent polycarbonate tube of 89 mm o.d. and 
50 mm high. Concentrically with this tube a glass tube of 50 
mm o.d. and 15 mm high was put inside. The paraffin/water 
interface was supported by the top end of the glass tube. The 
upper column was 70 x 70 mm in cross section and 450 mm in 
height. The front and rear walls were built of Pyrex glass 

Density1 

Kinematic viscosity2 

Thermal conductivity3 

Thermal diffusivity4 

854 kg/m3 

8.41 x 10"6 i 
0.123 W/m-K 

Measured with a pycnometer. 
LMeasured with an Ubbelohde viscometer. 
' Measured with a transient hot-wire apparatus described in [8]. 

plates, and the side walls were aluminum plates. Sheathed 
electric heating wires were imbedded in the aluminum plates. 
A bakelite tube holding seven copper-constantan ther
mocouples was inserted in a corner of the upper column. The 
tube had a spatula, made of a bakelite plate, at its bottom tip. 
The spatula served as a cover of the center hole on the baffle 
plate between the upper and intermediate columns, in order to 
prevent mixing of cooler paraffin from the upper column with 
hotter paraffin from the intermediate column. By rotating the 
bakelite tube around its axis one can open the center hole on 
the baffle plate and at the same time swing the thermocouples 
away from the central axis of the columns. 

The experimental procedure was as follows. The liquid in 
every column was heated up to a desired level: about 102°C 
near the dumping cup in the lower column, 100 to 101 °C at the 
paraffin/water interface in the intermediate column, and be
tween 96 and 98°C in the upper column. After steady state was 
established, the agitator in the upper column was stopped, and 
the central hole on the baffle plate between the intermediate 
and upper columns was opened. Then a steam bubble was 
formed at a nucleation site on the inside surface of the Pyrex-
glass dumping cup. (The nucleation site was not prepared ar
tificially; it was probably in a fortuitously prepared tiny 
scratch on the glass surface. Each nucleation was readily trig
gered merely by giving a small impact to the handle of the 
dumping cup.) By turning over the dumping cup, the bubble 
was released and it entered the intermediate column. Then the 
bubble broke through the paraffin/water interface and 
entered the upper column. The condensation process of the 
bubble in the upper column was recorded by use of a 
photography system as described in [3]. 

Before constructing apparatus II, explained above, we per
formed some experiments with a more crude one, apparatus I. 
It consisted of the same upper column that we later applied to 
apparatus II and the lower column of aluminum plates and 
glass plates. The paraffin/water interface was held at 10 to 20 
mm above the bottom plate of the upper column, and the 
temperature near the interface was not specified. However, 
apparatus I had an advantage: It made it possible to observe 
the whole process of interest, which began with the approach 
of each steam bubble toward the paraffin/water interface. 
Thus, some of the results obtained with apparatus I are also to 
be presented later as far as the formation of two-phase 
steam/water bubbles is concerned. 

The water used was taken from a commercial reverse-
osmosis/ion-exchange/distillation apparatus. It was boiled 
for the purpose of degassing just before pouring it into the 
lower column. The liquid paraffin was of reagent grade (Taisei 
Chemical Co., Ltd., Tokyo) and was saturated, before use, 
with water at almost the same temperature as that to be main
tained in the upper column. Some properties of the liquid 
paraffin saturated with water were measured in our own 
laboratory. Their values at 95 °C are listed in Table 1. 

Nomenclature 

Ds = equivalent spherical diameter of steam phase in 
two-phase bubble or of bare steam bubble 

AT = reference temperature difference 
Vsi = initial volume of steam bubble 
Vw = volume of entrained water 
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Results 

Condition for Two-Phase Bubble Formation. Ex
periments with apparatus I showed that steam bubbles having 
equivalent spherical diameters less than 3.5 mm pass through 
the paraffin/water interface without entraining water into the 
paraffin phase. Most bubbles with diameters between 3.5 and 
5.9 mm entrained water and rose in the paraffin phase in the 
form of two-phase steam/water bubbles, although some bub
bles in this diameter range did not entrain any water and rose 
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in the paraffin phase in the form of "bare" bubbles. Bubbles 
greater than 5.9 mm in diameter shed off the entrained water 
just above the interface, and then continued to rise in the 
paraffin phase in the form of "bare" bubbles. The above 
observations are generally in agreement with those of Mercier 
et al. [7] on the rise of air bubbles through a mineral oil/water 
interface. 

In the above experiments with apparatus I, steam bubbles 
approached the interface with velocities close to their terminal 
velocities. We found in a side experiment using a different ap
paratus, however, that as the approach velocity was reduced 
substantially, the probability of two-phase bubble formation 
by medium-sized steam bubbles increased to 100 percent. 
Thus, in some of the experiments with apparatus II we pro
vided an orifice of 3 mm i.d. at the bottom of the intermediate 
column (see Fig. 2) to reduce the approach velocity and 
thereby enhance the probability of two-phase bubble 
formation. 

Condensation Behavior. Figure 3(a) exemplifies an 
almost complete history of a condensing two-phase 
steam/water bubble. As the condensation proceeds, the rise 
velocity of two-phase bubble drops because of an increase of 
average density in the bubble. If the initial fraction of non-
condensible gas mixed in the steam is low enough, the 
steam/gas phase in the bubble shrinks further and thus the 
bubble begins to descend toward the interface. The steam/gas 
phase and the liquid phase separate from each other usually at 
this stage, as shown in Fig. 3(b). If the initial fraction of non-
condensible gas is higher, the steam/gas phase does not shrink 
enough and thus the two-phase bubble continues to rise to the 
free surface of the paraffin, where the steam/gas phase bursts 
into the atmosphere leaving a water drop which then starts to 
fall. When a steam bubble entrains a fairly large volume of 
water, it often sheds off part of the water while it is rising, as 
shown in Fig. 3(c). 

Figure 4 shows a sequence of rise of a "bare" steam bubble 
in the paraffin phase. Such a wake of emulsion as 
demonstrated in [3] for the case of steam bubbles released in 
methylphenyl silicone oil is not recognized here. It was found 
that when such a bare bubble burst at the free surface of the 
paraffin a number of water droplets with variable diameters 
from 0.02 to 0.14 mm were strewed into the paraffin. This fact 
means that the condensate droplets were conveyed by the bub
ble to the free surface and then spilled into the paraffin by the 

Fig. 3(a) Typical history of a two-phase bubble 
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Fig. 3(b) Disintegration of a two-phase bubble into a bubble of 
noncondensible-gas/steam mixture and a water drop 
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Fig. 3(c) Disintegration of the water phase in a two-phase bubble 

Fig. 3 Photographic records of two-phase bubbles formed through the 
interface crossing of steam bubbles 
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Fig. 4 Sequence of condensation of a "bare" steam bubble 
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Fig. 5 Volume of entrained water versus initial volume of steam bubble 

disturbance caused by the bursting of the bubble. The 
aforementioned difference in condensate appearance between 
the two systems may be ascribed to the liquid paraffin being a 
little less hydrophobic than the silicone oil. (This interpreta
tion has not been confirmed yet, because reliable surface and 
interfacial tension data are available only on one of the two 
systems, the water/silicone oil system [9].) In any case, such 
tiny condensate droplets as those observed in these two 
systems could offer a serious problem of phase separation, ir-
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Fig. 6(a) 

Time, s 

Fig. 6(b) 

Fig. 6 Instantaneous equivalent spherical diameter of steam phase in 
two-phase bubble (a) or of bare steam bubble (b) plotted against time 
lapse after its entrance into the upper column of apparatus II 
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Fig. 7 Instantaneous equivalent spherical diameter of steam phase in 
two-phase bubble (a) or of bare steam bubble (b) plotted against its 
height above the bottom surface of the upper column of apparatus II 

respective of their formation processes, which may be 
somewhat different from system to system depending on the 
properties of the medium liquid. 

Volume of Entrained Water. Figure 5 shows the 
dependence of volume of entrained water, Vw, on the volume 
of steam bubble crossing the paraffin/water interface Vsj. 
Since it was difficult to determine V„ directly by film analysis, 
this value was calculated from three volumes which were 
determined respectively by film analysis: the total volume of 
two-phase bubble, Vf, and the volume of steam/gas phase in 
it, Vsf, both being referred to completion of condensation; 
and Vsi. Note that Vsi could not be actually determined in the 
experiments with apparatus II because of an optical distor
tion; thus, the data for apparatus II were plotted on Fig. 5 by 
regarding as Vsi the volume of steam (or steam/gas) phase in 
each two-phase bubble at the entrance of the upper column. 
The deviation of the data for apparatus II from those by ap
paratus I suggests that bubbles underwent condensation in 
part before they left the intermediate column. The data from 
apparatus I - which we believe represent more accurately the 
real case - approximate those by Mercier et al. [7] on the 
dependence of V„ on the volume of air bubbles penetrating in
to the mineral oil phase whose density and kinematic viscosity 
were, respectively, 850 kg/m3 and 1.00 x 10~6 m2 /s . 

Bubble Collapse History. Figures 6 and 7 summarize the 
data on collapse history of the steam (or steam/gas) phase in 
each two-phase bubble or of each bare steam (or steam/gas) 
bubble obtained with apparatus II. Figure 6(a) shows the 
change of equivalent spherical diameter Ds of the steam phase 
in each two-phase bubble with the time lapse after its entrance 
into the upper column. Figure 6{b) shows the same thing for 
bare steam bubbles. Figures 7(a) and 1(b) show the change 
of Ds with the height of each bubble above the bottom surface 
of the upper column. The initial value of Ds (or initial volume 
Vsj) of each bubble cannot be specified because of the reason 
explained above. The reference temperature difference AT is 
defined as the excess, above the bulk temperature in the upper 
column, of the saturation temperature of water under the at
mospheric pressure plus the hydrostatic head at the bottom of 
the upper column. The noncondensible gas content was 
presumably different from bubble to bubble; but there must 
be little systematic difference in the content between two-
phase bubbles and bare steam bubbles, because both of them 
were generated in the same sets of experiments by the same 
procedure without intentionally distinguishing them. 

The data scatter more widely in Fig. 7 than in Fig. 6. This 
fact is ascribed to the formation of a thermal plume, from the 
bottom of the upper column, after removing the cover of the 
central hole of the baffle plate. Depending on the time lapse, 
from removing the cover until the bubble release, which was 
not controlled exactly, the height of the growing plume which 
the bubble must break through to meet the cool medium was 
different from run to run: the higher the plume, the higher the 
region where the bubble underwent a significant collapse. 

Because of the lack of exact controls on Vs„ the nonconden
sible gas content, and the thermal-plume formation in the ex
periments, the bubble-collapse data presented here are unfit 
for any quantitative analysis of the condensation process. 
However, they are still sufficient for us to draw an important, 
though no more than qualitative, conclusion: The condensa
tion of steam in a bubble is not hindered significantly by the 
entrained water shell over the bubble; in other words we can 
possibly overcome the problem of phase separation in direct 
steam/paraffin contact condensers by making bubbles entrain 
a water sheath in compensation for a little suppression of the 
condensation rate to a degree, as recognized in Fig. 6. 

Discussion 

In the present experiments with apparatus I and II, the en-
trainment of water resulting in the two-phase steam/water 
bubble formation was a stochastic event which depends on 
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hydrodynamic conditions such as rise velocity and shape 
oscillation of bubbles crossing the interface, and probably on 
the physicochemical nature of the interface, which in turn 
depends on the degree of contamination at the interface. Such 
a stochastic or erratic formation of two-phase bubbles is not 
desirable in practical condensers. However, if we employ, for 
example, a condenser design such as that illustrated in Fig. 1, 
the approach velocity of bubbles toward the interface will be 
suppressed substantially, and thus every medium-sized bubble 
will entrain some amount of water in the form of its shell. 

The water entrained by a steam bubble plays a few second
ary roles in the steam condensation apart from its primary role 
as an enclosure for confining the condensate in itself. Firstly, 
it eliminates the free-energy barrier for nucleation which 
would cause a finite supercooling of steam resulting in a 
decrease of the effective temperature driving force [3, 10]. 
Secondly, it yields some resistance to heat flow from the steam 
to the medium. In an early period of condensation the upper 
portion of a bubble was covered with a water film which was 
some 0.2 mm thick. The resistance afforded by such a water 
film is estimated to be 10 percent or less of the total resistance, 
if we assume a quasi-steady heat flow crossing the film. Third
ly, the entrained water serves as a sensible-heat reservoir. The 
data on the Vw versus Vsj relation obtained with apparatus I 
(see Fig. 5) indicate that the total sensible heat which can be 
released from the entrained water is as much as 1.5 to 4.8 
times the total latent heat which can be released from the 
steam phase, if the initial temperature of the entrained water is 
higher than the bulk temperature by, for example, 3.0 K.1 The 
significant sensible-heat release from the entrained water, 
joining the latent-heat release from the steam phase, will cer
tainly give a great complexity to the analytical model
ing - which is not discussed in the present paper - of the pro
cess of steam condensation in each two-phase bubble. 

All of the roles favorable for increasing the condensation 
rate of the entrained water are available as long as the water 
continues to envelope the steam phase throughout the conden
sation process. On the other hand, possibly unfavorable roles 
(i.e., the latter two) can become significant as Vw increases. 
Thus, it is desirable to minimize Vw provided the water shell 
does not rupture before the condensation completes, although 
we have not succeeded yet in any attempt at reducing V„. 

Conclusions 

A novel device has been presented for preventing tiny con
densate droplets from being scattered in a medium consisting 
of a hydrophobic coolant while steam bubbles are released in 
the coolant to condense. With this device steam bubbles are 
released into the coolant not directly but through a water layer 
underlying the coolant phase. Each steam bubble penetrates 

This fact does not always mean that the entrained water heats the coolant in 
vain and retards the condensation of the steam. In steady operation of such a 
condenser as illustrated in Fig. 1, the entrained water can have a positive role as 
a sensible-heat carrier by reciprocating between the bottom water layer, where 
heat is possibly removed in part from the steam in bubbles in formation and also 
from that in the steam distributor, and the bulk of the coolant where the heat is 
to be released. 

into the coolant phase while enveloped in a water shell. The 
experiments with liquid paraffin as the coolant have shown 
that condensation of steam in each bubble is completed within 
the confines of the water shell before its rupture, which results 
in a disintegration of the shelled bubble into a bubble of 
noncondensible-gas/steam mixture and a water drop in which 
all the condensate is dissolved. Thus, the difficulty of 
separating the two liquids is eliminated. 

One should note, however, the disadvantages (or restric
tions) of the device as well. First, the initial steam bubble size 
should fall in a fairly narrow range around several millimeters 
diameter to ensure the formation of a water shell. Second, the 
condensation rate is lowered a little by the presence of the 
water shell. The extent of these disadvantages must depend on 
the properties of the coolant. The subject is left for future 
study. 

Acknowledgments 

This study has been accomplished with a variety of 
assistance afforded by some students - past and present-in 
the Department of Mechanical Engineering, Keio University. 
The author expresses special thanks to T. Kojima, Y. Shimizu, 
H. Ogawa, and K. Inaba for their extensive efforts devoted to 
the experimental work. T. Nosoko and Dr. K. Higeta are 
acknowledged for their helpful suggestions on the apparatus 
and data processing. I am also grateful to Mr. N. Kawaguchi 
and Prof. A. Nagashima who kindly measured thermal con
ductivity and thermal diffusivity of the water-saturated liquid 
paraffin with an apparatus that they had recently developed. 

References 

1 Sideman, S., and Moalem-Maron, D., "Direct Contact Condensation," 
in: Advances in Heat Transfer, J. P. Hartnett and T. F. Irvine, Jr., eds., Vol. 
15, Academic Press, New York, 1982, pp. 227-281. 

2 Sudhoff, B., Plischke, M., and Weinspach, P.-M., "Direct Contact Heat 
Transfer With Change of Phase- Condensation or Evaporation of a Drobble," 
German Chemical Engineering, Vol. 15, 1982, pp. 24-43. 

3 Higeta, K., Mori, Y. H., and Komotori, K., "Condensation of a Single 
Vapor Bubble Rising in Another Immiscible Liquid," AIChE Symposium 
Series, Vol. 75, No. 189, 1979, pp. 256-265. 

4 Mori, Y. H., "Configurations of Gas-Liquid Two-Phase Bubbles in Im
miscible Liquid Media," International Journal of Multiphase Flow, Vol. 4, 
1978, pp. 383-396. 

5 Mori, Y. H., "Classification of Configurations of Two-Phase Vapor/Liq
uid Bubbles in an Immiscible Liquid in Relation to Direct-Contact Evaporation 
and Condensation Processes," International Journal of Multiphase Flow, Vol. 
11, 1985, pp. 571-576. 

6 Shimada, Y., Mori, Y. H., and Komotori, K., "Heat Transfer From a 
Horizontal Plate Facing Upward to Superposed Liquid-Layers With Change of 
Phase," ASME JOURNAL OF HEAT TRANSFER, Vol. 99, 1977, pp. 568-573. 

7 Mercier, J. L., da Cunha, F. M., Teixeira, J. C , and Scofield, M. P., 
"Influence of Enveloping Water Layer on the Rise of Air Bubbles in Newtonian 
Fluids," ASME Journal of Applied Mechanics, Vol. 41, 1974, pp. 29-34. 

8 Kawaguchi, N., Nagasaka, Y., and Nagashima, A., "A Fully Automatic 
Apparatus to Measure the Thermal Conductivity of Liquids by the Transient 
Hot-Wire Method," Review of Scientific Instruments, Vol. 56, 1985, pp. 
1788-1794. 

9 Mori, Y. H., Tsui, N., and Kiyomiya, M., "Surface and Interfacial Ten
sions and Their Combined Properties in Seven Binary, Immiscible Liquid-Liq
uid-Vapor Systems," Journal of Chemical and Engineering Data, Vol. 29, 
1984, pp. 407-412. 

10 Higeta, K., Mori, Y. H., and Komotori, K., "A Novel Direct-Contact 
Condensation Pattern of Vapour Bubbles in an Immiscible Liquid," The Cana
dian Journal of Chemical Engineering, Vol. 61, 1983, pp. 807-810. 

1012/Vol. 109, NOVEMBER 1987 Transactions of the ASME 

Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



H. R. Jacobs 
Department of Mechanical Engineering, 

The Pennsylvania State University, 
University Park, PA 16802 

Fellow ASME 

R. Nadig 
The Joseph Oat Corporation, 

Camden, NJ 

Condensation on Coolant Jets and 
Sheets Including the Effects of 
Noncondensible Gases 
The study of condensation of a pure vapor or a mixture of a vapor and a non
condensible gas on a laminar cylindrical jet or a falling sheet can provide the 
necessary information for designing cascade, curtain, or jet-type direct contact con
densers. Prior to the present work the only theoretical solutions were based on the 
solution of the Graetz problem and were thus restricted to problems where the 
Jakob number is zero. Using an integral formulation of the governing equations, an 
extension is made which provides results for practical values of both the Jakob and 
Graetz numbers. For the case where noncondensibles are present, detailed results are 
presented for the steam-air system. 

Introduction 

Direct contact condensers have been built and used in
dustrially for well over 80 years. Hausbrand's book Evapora
tion, Condensing and Cooling Apparatus appeared in its first 
German edition in 1900 and was later translated into English, 
appearing in five English language editions through 1933. 
Despite this early start the development of the theory for 
direct contact heat transfer lagged greatly behind that for sur
face condensers. This point is emphasized by the fact that 
How's article, "How to Design Barometric Condensers," 
published in 1956, was simply a description of rules of thumb 
for designing equipment. 

The article by How (1956) describes a wide range of equip
ment, including curtain and jet condensers such as those 
shown in Figs. 1 and 2. As can be seen these condensers have 
the coolant injected as a series of jets or solid sheets which fall 
down through a relatively quiescent vapor or vapor-gas mix
ture. Typically the vapor flows upward so that a counterflow 
exists. However, the vapor velocity is maintained sufficiently 
low that no coolant is stripped from the jets or sheets. 

Jet and curtain-type direct contact condensers have received 
considerable attention in the USSR and England (Oliker, 
1976). They are being used to replace feedwater heaters and as 
condensers in the Heller power cycles (Bakay and Jaszay, 
1978). Oliker (1976) noted a significant lack of technical data 
of even an experimental nature dealing with their design. He 
states that "the evaluation of this apparatus usually consists 
of determining a heat balance and the necessary flow rates of 
condensed steam. A calculation of the heat and mass transfer 
is not made." He then points out that precise evaluation of the 
direct contact condenser design is desirable. 

The earliest theoretical treatment of curtain and jet con
densers is that of Kutateladze (1952). In his work and the 
subsequent work of Hasson et al. (1964a, 1964b), it was 
assumed that the surface of the jet, which entered the vapor 
chamber at a temperature T0, was suddenly changed to the 
saturation temperature of the vapor. The vapor induced 
negligible shear on the liquid; thus the velocity in the jet was 
essentially constant. As the resistance of the condensate was 
assumed negligible, the solutions were applicable only if the 
Jakob number, defined as 

T0)/hA 

was infinitesimally small. This can occur if either (Tsat - T0) 
-* 0 or if hfR — oo. If the former is true no condensation takes 
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place, and the Graetz number required for complete condensa
tion is infinite. If hjg is infinite with (rsat - T0) finite the 
Graetz number for complete utilization of the coolant tends to 
zero. It is thus clear that the prior theories of Kutateladze and 
Hasson et al. cannot be applied unless a more accurate solu
tion is first obtained which would define where their solutions 
provide approximate results. 

When a small amount of noncondensible gas is present in a 
vapor, the rate of condensation can be appreciably reduced. 

WATER IN 

PLAIN DISK-
AND-DOUGHNUT 

SOLID SHELVES 

STEAM 

, WATER OUT 

Fig. 1 "Solid curtain" condenser, condensing on a sheet 

STEAM 

WATER IN 
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This is true not only for surface condensation (Minkowycz 
and Sparrow, 1966), but also for direct contact condensation 
(Hasson et al. 1964b; Taitel and Tamir, 1969). In experiments 
for steam condensing on a fan jet of water, Hasson et al. 
(1964b) have shown that the average heat transfer coefficient 
could be reduced by up to 50 percent for a concentration of 1 
percent air. 

Taitel and Tamir (1969) were the first to consider 
theoretically the effects of noncondensibles for direct conden
sation on a sheet of coolant. Their study neglected the added 
resistance due to the condensate forming on the sheet. More 
recently Jacobs and Nadig (1983) evaluated the effects of non
condensibles on the condensation of a vapor on an immiscible 
liquid flowing over an adiabatic surface. They indicated that 
both the added mass resistance and the effect of nonconden
sibles were importaint in understanding the overall problem. 

In this paper we treat the condensation of vapor on both a 
laminar sheet and on a jet of the same fluid, both for a pure 
vapor and in the presence of a noncondensible gas. For the 
pure vapor broadly applicable results are presented; however, 
for the case when noncondensibles are present, primary atten
tion has been directed to the steam-air system. The basic 
models, however, are generally applicable. 

General Assumptions 

1 The velocity profiles in the jet or sheet are uniform. 
The basis for this assumption, used by the investigators men
tioned above, is that the shear introduced by a low-pressure 
vapor on a moving liquid will be small. This is one of the 
classical assumptions of Nusselt (1916). 

2 The other assumptions inherent in the Nusselt (1916) 
analysis hold, i.e., (a) the flow is laminar with no surface 
waves; (b) the properties of the liquid are constant. 

3 The velocities in the gas-vapor phase are not influenced 
by gravity due to the fact that the velocity in the coolant 
stream is relatively high. 

4 The liquid-vapor-gas interface is impermeable to the 
noncondensible gas. See Minkowycz and Sparrow (1966) for 
justification. 

5 Interfacial resistance is negligible. This assumption has 
been shown by prior investigators, e.g., Minkowycz and Spar

row (1966), to be justifiable. The assumption substantiates the 
further assumption that the interface between the condensate 
and the vapor gas mixture is that of the local saturation 
temperature of the vapor, T*. For W„ = 0 we have T* = T 
= ^ sat • 

6 Axial conduction is negligible in the coolant stream. 
7 A further assumption to be made is that the Jakob 

number is small or moderate in size. The Jakob number is here 
defined as 

Ja = CPl(Toa-T0)/hfg 

The reason for this assumption is as follows: If we were to 
assume W„ = 0 and T„ = TSM, an energy balance from 
where the coolant enters the condensation chamber to where 
its temperature is equal to Tsat would yield: for a jet 

(1) 

(2) 

and for 
PICPI u( Tsat ~ 

a sheet 

P,CPIU(T 

Thus for a jet 

and for 

8C 

R 

a sheet 
8C 

T0)TR2 = 

sat -~TQ)L-

^Pl ' ^ sat " 

2 A* 

(-•Pi ' ^ sat ~ 

P,Uhfg 2wRl 

= p,UhfgbCx^ 

-T0) 

-T0) 

Ja 

2 

Tn 
h 'fs 

(3) 

(4) 

Tt is clear that if Ja is small or moderate, the thickness of the 
condensate layer will be small. For a vapor condensing on its 
own liquid this generally means that TsM - T0 is of moderate 
size and therefore the assumption of constant properties for 
the liquid should be reasonable. Further, the small mass addi
tion supports the prior assumption of uniform coolant veloci
ty, axially as well as laterally. If the mass addition were large it 
would affect the inertia of the sheet or jet. Small Jakob 
number, for low-pressure systems, provides for negligible 
dynamic influences. 

Mathematical Formulation and Physical Models 

The basic models for condensation on a sheet or jet in the 
presence of a noncondensible gas are shown in Figs. 3 and 4. 

a, b 

°PI 
D 
2D 

D„ 
Gz 

h 
hte 

= constants 
= specific heat of liquid 
= diameter 
= diffusion coefficient 
= hydraulic diameter 
= Graetz number = Rerf Pr 

D„/s 
= heat transfer coefficient 
= heat of vaporization 

Re 
R e o « 

Sc 
Tc 

Ja = Jakob number = Cp {Ta 

-T0)/hfg 

kt = thermal conductivity of 
liquid 

Tr, = 

T, = 

L = thickness of sheet 
Mv = molecular weight of vapor 
Mg = molecular weight of gas 
Nu = Nusselt number = hDH/k 

P = total pressure 
Pr = Prandtl number = Cp n/k 
Pv = vapor pressure 
R = radius of jet 
(R = universal gas constant 

T, 
Tn 

T 
U 
W 
X 

Reynolds number 
Reynolds number based on 
hydraulic diameter 
= UDH/v, U4L/v for sheet, 
UD/v for jet 
Schmidt number, v/D 
temperature of condensate 
layer 
centerline temperature of jet 
or sheet 
temperature between 
coolant and condensate 
layer 
temperature in sheet or jet 
inlet temperature of jet or 
sheet 
saturation temperature 
velocity of jet or sheet 
gas concentration 
distance along length of jet 
or sheet 

y = distance normal to 
centerline of sheet or jet 

5, = thermal boundary layer in 
Region 1 of jet or sheet 

5C = thickness of condensate film 
6M = thickness of velocity bound

ary layer in vapor-gas 
mixture 

8S = thickness of concentration 
boundary layer 

6 = nondimensional temperature 
defined in equation (14) 

Hi = dynamic viscosity of liquid 
Mm = dynamic viscosity of 

vapor-gas mixture 
v, = kinematic viscosity of liquid 

v,„ = kinematic viscosity of 
vapor-gas mixture 

Pi = density of liquid 
p,„ = density of vapor-gas 

mixture 
= length divided by DH 
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Tm , Wr 

Fig. 3 Schematic model for condensation on a sheet 

Tm , W„ 

Fig. 4 Schematic model for condensation on a jet 

As can be seen the sheet or jet is divided into two regions. 
Region 1 defines the length of sheet or jet necessary for a ther
mal boundary layer to grow from the condensate 
layer-coolant interface to the centerline of the coolant stream. 
Region 2 starts when the thermal boundary layer has reached 
the coolant centerline and continues until the condensation 
ceases. Outside the condensate layer of thickness bc, the 
vapor-gas mixture forms a thin boundary layer 5,„, in which 
the noncondensible gas concentration varies from W* at the 
liquid-mixture interface to the free-stream value of W„. At 
the vapor-gas condensate interface the temperature is T*. At 
the interface between the liquid coolant and the condensate 
layer the temperature is T,. 

A Region 1 Equations. 
for the coolant is 

In Region 1 the energy equation 

d fi 

dx ii 
PlCplU(T,-T0)y"dy = k, „,_„_-, .„„ _. ^(yK^f) , (5) 

dx JL-6, p< V ay / y=L 
For the sheet n is equal to zero and for the cylindrical jet it is 

equal to one. Further, for the jet L = R, which is the coolant 
radius, while for the sheet L is the half-thickness of the sheet. 

In the condensate layer the assumption of small Jakob 
number insures that the sensible heat capacity of the conden

sate is small compared to the heat of vaporization and that the 
condensate layer is thin. These assumptions allow us to neglect 
the sensible heat of the condensate; thus the energy balance 
for the condensate layer yields for both the sheet and jet 

d (L+Sc bTc I 
hAir\ PiUy"dy = kly"-T^\ (6) 

JS dx JL by h=L 
The assumption of negligible thermal capacitance of the 

condensate layer implies a linear temperature profile across it. 
Thus 

Tc = Ti+(y-L) ( ^ ) (7) 

The thermal capacitance of the coolant is the only heat sink 
to induce condensation; therefore, a more general profile is 
necessary. The boundary conditions are 

T, = T0 and 
dT, 

• Oaty = L-b, 

and T = TjdXy = L. These conditions lead to 

T, = T,+-
T,-Tn 

8} 
- ( JL 2 -2 5,L + 2.y(-Z, + 5 / ) + r ! ) 

(8) 

(9) 

The compatibility condition of the heat fluxes at the interface 
between the coolant stream and condensate film 

(10) 
dTc I _ dT, I 

dy b>=L by \y=i 

leads to the following expression for the interfacial 
temperature: 

T0 + ViS,/dcT* 

l+<A5,/8r 
(11) 

Substituting equations (7), (9), and (11) into equations (5) and 
(6) results in 

12 ddj' 

dx <APr Re r % 
25? 

(-*)'£)('•»!) 

-i-('4)"£H<'-*>-('*»-£M'4n 
and 

dbl 

dx 

2 Jar0* 

Refl Prc l + ./2 
5, (1 + 25 .)•] 

(12) 

(13) 

where lengths have been nondimensionalized with respect to 
the hydraulic diameter and 

e=J^l°- (14) 
T„-T0 

In order to solve equations (12) and (13) it is first necessary 
to determine the value of 6*, the nondimensional saturation 
temperature at the condensate vapor-gas mixture interface. 
This of course requires solving for the concentration of the 
vapor at the interface, which in turn requires the solution of 
the vapor gas momentum and species equations. The assump
tion of a small value of Jakob number and small variations in 
hfg allows for integration of the Clausius Clapeyron equation 
to yield 

hfg(Ta-T0) 
In 

1+- — In —— 

(15) 

"fg 
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The ratio of partial pressure of the vapor to total pressure 

\-W 

P 

' - ( - # - ) 

(16) 

then allows for relating the mass concentration of gas to the 
value of 6*. (For the special case of Pv/P = 1, Wa = 0, no 
superheat, and thus T„ = TsM, 6* is 1.0.) 

The integral forms for the momentum and species equations 
in the gas-vapor mixture, assuming that the condensate 
vapor-gas interface is impenetrable to the gas, reduce to 

dx Ji+«c 
-\ u2yndy+U2(L + 8n)

n — ' 
dx 

( du\\ 
(17) 

(JV-WO0)uy"dy = £> 
Wx / dW\\ 

—ly" ) 
W* \ dy ) \L+ 

and 

d r^+Sc+So 

dx JL+5C 

(18) 

The conditions of no slip at the condensate vapor-gas mix
ture interface, zero velocity in the mixture as y — oo, and the 
condition of du/dy = 0 as y — oo suggest that in the mixture 

y-(L + 8c)-\
2 

c ' (19) -«[-^]-
For the species equation with W\L+S = W*, W\L+i +s 

= Wa and dW/dy\L+l, +6 = 0, we obtain 

W-Wa = {W*-Wa)(\ 
y-(L + scy 

(20) 

Substituting equations (19) and (20) into equations (17) and 
(18) and nondimensionalizing results in 

B Region 2 Equations. Region 2 begins when 5, = £ 
From this point the entire coolant stream heats up such that 
the centerline temperature will be continuously increasing. 
The energy equation for the coolant stream in Region 2 
changes from that given in equation (5) only in that the limits 
of integration are from y = 0 to L. The temperature profile in 
the coolant must satisfy the boundary conditions 

dT, 
y = 0 

dy 
= 0, T, = TC 

and 

y = L T=Tj (24) 

These conditions are satisfied by the expression 

T,-TCL = (.Tl-TCL)(y/L)2 (25) 

The governing equation and the temperature profile for the 
condensate layer are the same as in Region 1. Using the com
patibility of heat fluxes at the interface between the original 
coolant stream and the condensate layer yields 

L/6*-8j\ 
e'~ecL=-z\~T-) (26) 

Using equation (26) and the temperature profile for the 
coolant stream there results from the coolant energy equation 

ddi 

dx 

(3/2)"(0*-0, 
Ren Pr 

) e*-ec db2
c de* 

82 dx dx 

8(3/2)"5c + l 
(27) 

(28) 

and the condensate film energy equation remains as 

d82 _ 2 Ja 6*-6i 

~~dx~~ ReD / /Pr (1+2 5C)" 

The relations defining 52
m, W*, Sj remain as given for Region 1 

and as expressed in equations (21), (22), and (23). The initial 
conditions for the 6h S2, 6*, W*, b2

m, and 8j for Region 2 are 
the conditions obtained at the end of Region 1. 

12 Pi d81 
d82

m _ ReD/ / u,/v„ dx 

dx 

and 

jd_ 

dx 
[(W*-W„) 

+ 8: (I-

0 + <U" 

1 5, 1 

(21) 

5, 1 
10 81 

51 
10 81 •)]] 

Refl/ /Sc v,/v, 
-(,Vi+8c)

n W 

W* Fr^) (22) 

The condition of impermeability of the condensate vapor-gas 
mixture interface leads to 

W„ 
W*=-

l - ( l /4 )Re f l H Sc N d8l 
(23) 

Hn dx 

Thus, for Region 1, equations (12), (13), (15), (16), (21), (22), 
and (23) completely define the condensation on a sheet or jet 
in the presence of a noneondensible gas, while equations (12) 
and (13) are sufficient for W„ = 0 and 7^ = r s a t , with 6* = 
1.0. 

C Calculation of Percent Coolant Utilized. The mean 
temperature of the coolant is calculated from the equation 

Tm j o PlCPl U y"dy = j o p,CPl U T,y"dy (29) 

For Region 1 

flm=(4/3M[2(l-«,)]" (30) 

In Region 2 for a sheet 

em=(2/3)0L +(1/3)0, (31) 

and for a jet 

e m = ^ (32) 

Note that the definition of 6 is as given in equation (14); thus, 
the value of 9m yields the utilized fraction of the coolant 
capacity to absorb the heat given up by the condensation pro
cess. For direct contact condensation, it is this quantity that is 
important to the designer rather than the heat transfer coeffi
cient or local Nusselt number. Thus, in this paper the percent 
coolant utilized is the primary factor reported. The heat 
transfer coefficient or Nusselt number are only reported for 
comparison with the results of prior studies. 

Results and Discussion 

A Condensation of a Pure Vapor. As noted earlier, for 
Wm = 0 and T„ = Tmt, we have the case of a pure saturated 
vapor condensing on a coolant stream, and need solve only 
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Table 1 Percent coolant capacity utilized for condensation on a sheet 

20 30 

GRAETZ NUMBER 

Fig. 5 Percent coolant capacity utilized for condensation of a pure 
saturated vapor on a sheet 

10 20 30 

GRAETZ NUMBER 

40 

Fig. 6 Percent coolant capacity utilized for condensation of a pure 
vapor on a jet 

equations (12) and (13) as 6* = 1. Examination of these equa
tions indicates dependence only on KeD , Pr, x/DH, and Ja. 
For very small values of x/DH a similarity solution exists, and 
5C and 8, can be expressed as 

\ = anx
1' . = « „ * " 

and 

S,l,-0 = M1 / 2+ . . . = M1 / 2 

Thus for small values of x it can be shown that 
(Reg / /Pr DH/x)l/2 

UD"{X) ~ ( 3 / 4 + 2Ja)1/2 + (3/4)1/2 

Gz¥2 

(3/4 + 2Ja)1/2 + (3/4)1/2 

for both the jet and sheet. 
For the limiting case of Ja--0 and small x 

G z ^ i/2 

T 

(33) 

/Gz , \ 

(34) 

(35) 

which is nearly equal to the results of Kutateladze (1952) and 
Hasson et al. (1964) for large Graetz number. The analytical 
Graetz problem they solve differs only in the 3 in our equation 
(35) being replaced by IT. The difference would indicate that 
for large Graetz numbers the present solution gives a slightly 
faster heating of the coolant than the Graetz solution. The two 
solutions yield results within 3 percent for Jakob number less 
than 0.05. 

As noted in the development of the governing equations, it 
is of more value to present the percent coolant utilized than 
the local or average Nusselt number when solving problems of 
direct contact condensation. Figures 5 and 6 present percent 
utilization curves from the results of our analyses for a sheet 
(n = 0) and a cylindrical jet (n = 1), respectively. The range 
of Ja covered is for values less than 0.2 while the value of the 

Gz 

78.9 
56.6 
19.6 
ii.t 
39.7 
36.1 
33.1 
30.6 
28.H 
26.5 
21.9 
21.1 
22. 1 
19.9 
18.1 

17.3 
15.9 
13.8 
12. ! 
10.5 
8.9 
7.9 
7.1 
6.9 
6.1 
6.2 
5.9 
5.6 

5.3 
5.1 
1.8 
1.7 

Gz Sol. 

50.8 
59 
63 
66 
70 
72 
75 
77 
79 
81 
83 
81 
86 
88 
90 
91 
93 
95 
96 
98 
99 
99 
99 
99 
99 
99 
99 
99 
99 
99 
99 
99 

7 
5 
9 
0 
9 
1 

7 
8 
7 
1 
9 
1 
8 
8 
7 
2 
1 
9 
1 
1 
1 
6 
7 
8 
9 
9 
9 
9 
9 
9 
9 

Percent 
Ja=0.01 

53.1 
62.9 
67.0 

70.7 
73-9 
76.9 
79.1 
81.7 
83.7 
85.5 
87.1 
88.5 
89.8 
91.9 
93.6 

91.3 
95.5 
97.1 
98.2 
99.0 
99.6 
99.8 
99.8 
99.9 

Coolant 
Ja=0.05 

51 .7 
61.3 
65.3 
68.9 
72. 1 
71.9 
77.5 
79.8 
81.9 
83.7 
85.3 
86.8 
88.1 
90.1 
92.2 
93-0 
91.3 
96.3 
97.6 
98.5 
99.3 
99.6 
99.7 
99.8 
99.9 
99.9 

Capacity Utilized 
Ja=0.10 Ja=0.15 

50.2 18.8 
59.5 57.8 
63.1 61.6 
66.9 65.0 
70.0 68.1 
72.8 70.9 
75.1 73.1 
77.7 75.7 
79.7 77.8 
81.6 79.7 
83.3 81.1 
81.8 82.9 
86.2 81.1 
88.6 86.8 

90.5 88.9 
91.1 89.8 
92.9 91.1 
95.1 93.9 
96.6 95.6 
97.9 97.1 
98.9 98.1 
99.3 98.9 
99.5 99.2 
99.7 99.6 
99.8 99.6 
99.8 99.7 
99.9 99.7 
99.9 99.8 

99.9 
99.9 

Ja-0.2C 

17.5 
56.3 
60.0 
63.1 
66.1 
69.2 
71 .7 
73.9 
75.9 
77.9 
79.6 
81.2 
82.7 
85.2 
87.1 
88.3 
90.0 

92.7 
91.6 

96.3 
97.8 
98.5 
98.9 
99.2 

99.1 
99.5 
99.6 
99.7 
'.9.8 
99.8 
99.9 
99.9 

Table 2 Percent coolant capacity utilized for condensation on a jet 

Gz 

58.8 
15.5 
37.0 

31.3 
27.0 

23.8 
21.3 
19.2 
17.5 
16.1 
11.9 
13.9 
12.9 
12.2 
11 .5 
10.9 
10.1 
9.3 
8.7 
8.2 
7.1 
6.8 

6.3 
5.8 
5.1 
5.1 
1.7 
1.1 

1.3 
1.1 
3.9 

Gz Sol. 

51.7 
57.5 
62.5 

66.7 
70.5 
73.7 
76.6 
79.2 
81.5 
83.5 
85.3 
86.9 
88.3 
89.6 
90.8 
91 .8 
93.1 
91.2 

95.1 
95.9 
96.9 
97.7 
98.3 
98.7 
99.0 

99.3 
99.5 
99.6 
99.7 
99.8 
99.8 

Percer 
Ja=0.0l 

53.6 
60.1 
66.2 

71 .1 
75.3 
78.9 
81.9 
81.6 
86.7 
88.8 
90.1 
91.8 
92.9 
91.0 

91.9 
95.6 
96.5 
97.3 
97.8 
98.3 
98.8 
99.2 
99.5 
99.6 
99.8 
99.8 
99.9 

t Coolant 
Ja-0.05 

52.6 
59.2 
61.9 
69.8 
73.9 
77.6 
80.7 
83.3 
85.6 
87.6 

89.3 
90.7 
92.0 

93.1 
91.0 
91.8 
95.9 
96.7 
97.3 
97.9 
98.5 
98.9 
99.3 
99.5 
99.7 
99.8 
99.9 
99.9 

Capacity Ut 
Ja=0.10 

51.1 
57.9 
63.5 
68.3 
72.5 
76.0 
79.1 
81.8 
81.2 
86.2 
87.9 
89.5 
90.8 
91.9 
92.9 
93.9 
91.9 
95.9 
96.7 
97.3 
98.0 
98.6 
98.9 
99.3 
99.5 
99.6 
99.8 
99.8 
99.9 

lized 
Ja-0.15 

50.3 
56.7 
62.2 

66.9 
71 .0 
71.6 
77.7 
80.1 
82.8 
81.8 
86.7 
88.2 
89.6 
90.9 
91.9 
92.9 
91.1 
95.1 
95.9 
96.6 
97.5 
98.2 
98.7 
99.0 

99.3 
99.5 
99.7 
99.8 
99.8 

99.9 

Ja=0.20 

19.3 
55.6 
61 .0 
65.7 
69.7 
73.3 
76.1 
79.1 
81.5 
83.6 
85.1 
87.1 
88.5 
89.8 
90.9 
91.9 
93.2 
91.3 
95.2 
95.9 
96.9 
97.7 
98.3 
98.7 
99.0 

99.3 
99.5 
99.7 
99.7 
99.8 

99.9 

Graetz number is from 0 to 50 for the sheet and 0 to 40 for the 
jet. Tables 1 and 2 present tabulated values for the sheet and 
jet, respectively. 

The primary reason for presenting both figures and tables 
deals with the difficulty in obtaining accurate values for the 
Graetz number, and thus coolant stream length, at high 
degrees of coolant utilization. The curves appear to converge 
while in fact considerable spread is seen from the tables. 

Comparison between condensation on a jet and sheet can be 
made by comparing values of coolant utilization shown in 
Tables 1 nd 2 and by examining the case of Ja = 0.05 shown in 
Fig. 7. For Gz — oo the heat transfer is the same as already 
noted; however, a considerable divergence of percent coolant 
utilized occurs for Gz < 50. For a percent coolant utilization 
of 99.5 percent, the jet requires a 30 percent smaller value of 
the Graetz number than the sheet. For equal hydraulic 
diameters this corresponds to a 41 percent longer coolant 
stream; of course, for a jet diameter equal to the sheet 
thickness the jet need be only 46 percent as long! 
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Fig. 7 Comparison of coolant capacity utilization for condensation of a 
pure saturated vapor on a sheet and a jet for Ja = 0.05 
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Fig. 9 Condensation of steam on a jet of water, W„, = 0.05, P = 101 
kPa 

10 

I.O 

0.8 

0.6 

0.4 

0.2 

0.0 

Fig. 8 Condensation of steam on a sheet of water, tV„ = 0.05, P = 
101 kPa 
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Our results show further that for 0.01 < Ja < 0.20 that the 
heat transfer for the entire range of Region 1 is well satisfied 
by equation (34). For the jet 0,- varied by about 5 percent over 
Region 1 for Jakob number of 0.2 but less than 1 percent for 
Jakob number of 0.01. However, to design a sheet or jet con
denser the solutions for both regions must be obtained, and 
both 0, and dcL vary significantly in Region 2. Thus, the 
tabulated values must be used. 

B Condensation With Noncondensibles Present. For the 
case when noncondensibles are present, the governing equa
tions indicate that all of the following parameters are of im
portance: Rez)„> Pr, x/DH, Ja, Mv/Mg, p//pm, v,/vm, and 
W^. Due to the large number of variables, we have restricted 
the results to be presented in this paper to parameters which 
typify the problem for a steam-air system. In this way we are 
able to compare our results more easily with those of other in
vestigators (Hasson et al., 1964b; Minkowycz and Sparrow, 
1966; Taitel and Tamir, 1969; Jacobs and Nadig, 1983). 

As noted in Region 1, a similarity solution is available for 
very small values of x. In fact, for the problem of the sheet, 
for small values of the Jakob number, the similarity solution is 
applicable for the entire region. For the cylindrical jet an error 
exists if the similarity region is used to describe the entire 
region. The similarity solution is satisfied by 5, = axl/1, 8C = 
bx[/2, 8m = c xl/2 and Ss = d xl/2. These solutions indicate 
that W*, 0*, and 0, are of constant value in Region 1. Similar 
results were found by Taitel and Tamir (1969) for condensa
tion in the presence of a noncondensible gas. The extent of 
Region 1 is a function only of DH and the Peclet number. For 
a sheet the extent of Region 1 is given by 

Fig. 10 Condensation of steam on a sheet of water, IV^, = 0.05, P 
19.86 kPa 

= 0.083 Ren . .Pr (36) ysheet "DH 

which is in agreement with Taitel and Tamir. 
The governing equations for the cylindrical jet are highly 
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Fig. 11 Condensation of steam on a jet of water, Wa = 0.05,P = 19.86 
kPa 

nonlinear and do not yield a similarity solution unless x — 0. 
Thus, the extent of Region 1 is dependent upon other 
parameters. However for Ja < 0.05 an approximate value of 
xD. can be obtained as the changes in 0;, W*, and 0* are 
small. The approximate value is 

iDjet =0.146 ReDwPr (37) 

Equation (30) gives the value of the mean temperature for 
Region 1 for the case where Ja — 0 and Wx — 0 and 0, goes to 
1. Here 0,„ - 1/3 at 5, = L for a sheet, and 0,„ - 2/3 at 5, = 
R for a jet. The effect of noncondensibles is to lower the 
values of 0* and 0, even for very small values of Ja. Since 0,„ is 
equal to the fraction of coolant cooling capacity utilized, it is 
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Table 3 Ratio ol Graetz number for W0 
condensation on a sheet 

•• 0 to that tor a given W^, tor 

% Pressure 

UtM. 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

<Pa 

101 
101 
01 

101 

101 
101 
01 
01 

01 
01 
01 
01 

01 
01 
01 
01 

9.7 
9.7 
9.7 
9.7 

9.7 
9.7 
9.7 
9.7 

9.7 
9.7 
9.7 
9.7 

9.7 
9.7 
9.7 
9.7 

Woo 

0.005 
0.005 
0.005 
0.005 

0.01 
0.01 
0.01 
0.01 

0.05 
0.05 
0.05 
0.05 

0.1 
0.1 
0.1 
0.1 

0.005 
0.005 
0.005 
0.005 

0.01 
0.01 
0.01 
0.01 

0.05 
0.05 
0.05 
0.05 

0.1 
0.1 
0.1 
0.1 

AT = 13.9°C 

(25° F) 

1.047 
1.050 
1.606 
1.080 

1.117 
1.121 
1.131 
1.168 

1.632 
1.720 
1.818 
2.042 

2.567 
2.824 
3.185 
3.749 

1.185 
1.213 
1.244 
1.291 

1.397 
1.446 
1.516 
1.615 

3.596 
3.962 
4.439 
5.088 

7.573 
8.582 
9.884 

11.798 

Ratio of Graetz Number 
AT = 27.8"C 

(50°F) 

1.089 
1.091 
1.103 
1.129 

1.179 
1.191 
1.217 
1.266 

2.117 
2.259 
2.470 
2.708 

3.860 
4.235 
4.479 
5.380 

1.383 
1.413 
1.472 
1.542 

1.865 
1.921 
2.035 
2.842 

6.698 
7.263 
7.997 
8.818 

14.944 
16.426 
18.322 
20.507 

AT = 41.7"C 
(75°F) 

1.107 
1.139 
1.153 
1.173 

1.235 
1.293 
1.316 
1.368 

2.797 
3.008 
3-223 
3-479 

5.556 
6.079 
6.624 
7.249 

1.622 
1.686 
1.747 
1.826 

2.448 
2.573 
2.693 
3.597 

10.840 
11.672 
12.357 
13.108 

24.508 
26.606 
28.444 
30.420 

AT = 55.5'C 

(100"F) 

1.168 
1.177 
1.198 
1.220 

1.356 
1.384 
1.428 
1.473 

3.702 
3.863 
4.102 
4.334 

7-764 
8.203 
8.781 
9.316 

1.956 
2.021 
2.090 
2.150 

3.274 
3.395 
3-513 

16.309 
16.838 
17.460 
17.885 

36.916 
38.387 
40.164 
41.398 

Table 4 Ratio of Graetz number for IV« 
condensation on a jet 

0 to that for a given W„ for 

% 
Util. 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

60 
70 
80 
90 

Pressure 
KPa 

101 
101 
101 
101 

101 
101 
101 
101 

101 
101 
101 
101 

101 
101 
101 
101 

19.7 
19.7 
19.7 
19.7 

19.7 
19.7 
19.7 
19.7 

19.7 
19.7 
19.7 
19.7 

19.7 
19.7 
19.7 
19.7 

W „ 

0.005 
0.005 
0.005 
0.005 

0.01 
0.01 
0.01 
0.01 

0.05 
0.05 
0.05 
0.05 

0.1 
0.1 
0.1 
0.1 

0.005 
0.005 
0.005 
0.005 

0.01 
0.01 
0.01 
0.01 

0.05 
0.05 
0.05 
0.05 

0.1 
0.1 
0.1 
0.1 

AT = 13.9°C 
(25° F) 

2.000 
2.042 
2.000 
1.872 

2.451 
2.620 
2.634 
2.481 

5.333 
6.282 
6.911 
6.955 

10.549 
12.211 
13.178 
13.205 

2.393 
2.707 
3.238 
3.613 

3.120 
3.748 
4.722 
5.510 

12.784 
15.070 
16.743 
17.032 

26.765 
29.014 
30.158 
29.609 

Ratio of Graetz Number 
AT = 27.8"C 

(50° F) 

1.698 
1.822 
1.924 
1.883 

1.981 
2.219 
2.505 
2.620 

5.226 
6.603 
7.724 
8.074 

11 .849 
13.877 
14.848 
14.632 

1.638 
1.858 
2.583 
3.943 

2.556 
3.440 
4.757 
6.477 

1 4.208 
16.534 
18.314 
19.577 

27.057 
29.589 
30.981 
31.319 

AT = 41.7"C 
(75°F) 

I.444 
1.480 
1.713 
2.148 

1.667 
1.840 
2.324 
3.059 

6.019 
7.653 
9.074 
9.728 

13.704 
15.653 
16.750 
16.550 

1.940 
2.892 
4.029 
5.093 

4.429 
6.034 
7.346 
8.410 

17.870 
19.720 
20.917 
21.692 

29.648 
31.613 
32.685 
32.899 

AT = 55.5°C 
(100°F) 

1.268 
1.282 
1.554 
2.261 

1.536 
1.744 
2.384 
3.392 

7.339 
8.974 

10.357 
11.063 

15.232 
16.987 
18.080 
17.926 

4.657 
6.862 
8.387 
8.387 

9.989 
12.215 
13.308 

3.156 

23.589 
25.090 
25.536 
24.994 

34.143 
35.590 
36.018 
35.278 

clear that an increase in Wa will decrease the fraction of 
coolant utilized. Thus, it is necessary, under all conditions 
where one wishes to utilize a major portion of the coolant 
capacity, to carry out the analyses for Region 2. 

Typical behavior for 0,-, 0*, 0m, and W* are shown in Figs. 
8-11 as functions of x. It is clear that the effects of the non-

UJ 
o 
rr 
UJ 
a. 

100 

8 0 

6 0 

4 0 

2 0 

O 

1 1 1 

STEAM 

P = 101 

~ \ \ 

-

-

1 1 1 

AIR 
KPa ; 

1 

SYSTEM 

A T = 27 .8 

1 

1 

°C 

-

-

- W ro = 0 . 0 0 5 — 
0.01 

0.05 _ 

Q l 

-

1 
20 30 40 50 

GRAETZ NUMBER 

60 

Fig. 12 Effect of W^ on percent coolant utilized for condensation on a 
sheet, P = 101 kPa 

Q 
UJ 
M 

I -
3 

2 
UJ 
o 
rr 
ui 
o_ 

0 0 

8 0 

6 0 

4 0 

2 0 

O 

I I I 

STEAM 
P 

~ \ / ^ \ ^ 

I I 

I I I 

AIR SYSTEM 

19.86 KPa 

I I 

; A T = 27.8 °C 

- - - - Woo = 0 . 0 0 5 

~ - - - 0.0 I 

0 .05 

O.I 

I I 

-

-

-

-

— 

IO 20 30 40 50 

GRAETZ NUMBER 

60 

Fig. 13 Effect of VIa on percent coolant utilized for condensation on a 
sheet, P = 19.86 kPa 

condensible gas are more pronounced at lower pressures. This 
fact was previously noted by Taitel and Tamir (1969) for con
densation on a sheet and by Minkowycz and Sparrow (1966) 
for the case of condensation on a cooled plate. An examina
tion of the governing equations developed in this paper would 
indicate that this is due to the change in p//pm with pressure. 
As pressure decreases pt/pm increases, thus increasing W*. 
This in turn leads to a lower value of heat transfer and extends 
the length of the coolant stream necessary to achieve a given 
coolant utilization. 

In Region 2 the entire coolant stream heats up, and the rate 
of condensation decreases. The decrease in condensation rate 
brings less noncondensibles to the condensate-vapor gas inter
face which allows 0* and 6, to increase. Eventually W* 
decreases to the free-stream value W„. The decrease in W* 
leads to a "recovery" of the heat transfer coefficient above 
that for a pure vapor at large values of x in Region 2. 
However, the length of coolant stream necessary to achieve a 
given degree of coolant utilization for condensation is general
ly larger than for a pure vapor even though Wa might become 
extremely large. Jacobs and Nadig (1983) have indicated that 
for condensation on an immiscible thin film, it is possible for a 
maximum value of coolant stream length to occur. Further in-
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creases in Wx would lead to a decrease in the length required 
for a given degree of utilization. Although for the present 
problem we did not observe this behavior, examination of the 
governing equations would indicate the possibility as Pv/P 
tends to zero. 

For the case of steam-air, Tables 3 and 4 indicate the ratio 
of Gr without noncondensibles to that with noncondensibles 
present as a function of W„ and Ja for the two pressures il
lustrated in Figs. 8-11. Figures 12 and 13 show the results for a 
sheet. The experimental data of Hasson et al. (1964b) for con
densation on a sheet were obtained for the pressures utilized 
here. They claim accuracy of ±35 percent. For Wx - 0.01 
the experiments indicate a ratio of the Graetz numbers of 1.8 
for effectively complete condensation. Table 3 indicates a 
value of 1.826 for 90 percent utilization at P = 19.2 KPa (2.89 
psia) and AT = 41.7°C (75°F). At the higher pressure his AT 
was approximately 73.3°C (142°F). Extrapolation of the data 
of Table 3 would yield a ratio of the Graetz numbers of 1.65. 
These values are well within the experimental error and in
dicate good agreement. 

Conclusions 

An analysis of direct contact condensation applicable to jet 
and sheet condensers with and without condensibles present 
was carried out. For large values of Gz and very small values 
of Ja the results are in agreement with the work of Taitel and 
Tamir (1969) for condensation on a sheet. For small values of 
Gz the results deviate, since Taitel and Tamir neglected the in
fluence of the condensate film. 

Numerical and graphic results are presented for 0 < W„ < 
0.05 for Ja < 0.20 for a steam-air mixture. These results are 
recommended for use in atmospheric to subatmospheric con
ditions. The good agreement with published experimental data 
provides confidence in the use of the models for design pur
poses. It is recommended that the governing equations 
developed herein be used for developing design curves for 

other pressures and for other fluid systems. It is necessary that 
calculations be carried out for these cases as the solutions of 
the governing equations with noncondensibles present are 
strongly influenced by the ratio of P//pm-

Acknowledgments 

Support of the U.S. Department of Energy under Grant No. 
DEAS07761D01523 is appreciated. 

References 

Bakay, A., and Jaszay, T., 1978, "High Performance Jet Condensers for 
Steam Turbines," Proceedings of the 6th International Heat Transfer Con
ference, Vol. 2, pp. 61-65. 

Hasson, D., Luss, D., and Peck, R., 1964, "Theoretical Analyses of Vapor 
Condensation on Laminar Jets," International Journal of Heat and Mass 
Transfer, Vol. 7, pp. 969-981. 

Hasson, D., Luss, D., and Navon, V., 1964b, "An Experimental Study of 
Steam Condensing on a Laminar Water Street," International Journal of Heat 
and Mass Transfer, Vol. 7, pp. 983-1001. 

Hausbrand, E., 1933, Evaporating, Condensing and Coolant Apparatus, 5th 
ed., D. Van Nostrand, Co., New York. 

How, H., 1956, "How to Design Barometric Condensers," Chemical 
Engineering, pp. 174-182. 

Jacobs, H. R., and Nadig, R., 1983, "Condensation on an Immiscible Falling 
Film in the Presence of a Noncondensible Gas," Heat Exchangers for Two 
Phase Applications, ASME HTD, Vol. 27, pp. 99-106. 

Kutateladze, S. S., 1952, Heat Transfer in Condensing and Boiling, Moscow, 
Chapt. 7; English translation by U.S. Atomic Energy Commission, AEC-
TR-3770, 2nd ed. 

Minkowycz, W. J., and Sparrow, E. M., 1966, "Condensation Heat Transfer 
in the Presence of Noncondensibles, Interfacial Resistance, Superheating, 
Variable Properties and Diffusion," International Journal of Heat and Mass 
Transfer, Vol. 9, pp. 1125-1144. 

Nusselt, W., 1916, "Die Oberflachenkondensation des Wasserdampfes," Z. 
Ver. Deutsch Ing., Vol. 60, pp. 541-569. 

Oliker, I., 1976, "On Calculation of Heat and Mass Transfer in Jet Type 
Direct Contact Heaters," ASME National Heat Transfer Conference, St. Louis, 
MO, Paper No. 76-HT-21. 

Taitel, Y., and Tamir, A., 1969, "Condensation in the Presence of a Non
condensible Gas in Direct Contact," International Journal of Heat and Mass 
Transfer, Vol. 12, pp. 1157-1169. 

1020/Vol. 109, NOVEMBER 1987 Transactions of the ASME 

Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Journal of 
Heat Transfer 

ThiB section contains shorter technical papers. These shorter papers wl 
(or full papers. 

I be subjected to the same review process as that 

A Solution to Unsteady Conduction in Periodically 
Layered, Composite Media Using a Perturbation 
Method 

K. D. Hagen1 

medium consists of alternating layers of two materials having 
conductivities k{ and k2. Each layer has a thickness /, and con
tact resistance at layer interfaces is neglected. The thermal 
conductivity can be expressed as a Fourier series 

k{x)=h±^+
2^-^ sin[(2n - 1)TTX//] 

2 « - l (1) 

Introduction 

Heat conduction in composite media finds application in 
such areas as reinforced laminates, filament wound structures, 
and geological strata. In their classic text on heat conduction, 
Carslaw and Jaeger (1959) give solutions for certain two-
region problems to which standard analytical techniques apply 
as well as problems where special forms of spatially dependent 
thermal properties yield the Bessel equation. Quasi-
orthogonal expansion methods have been used by several in
vestigators, e.g., Tittle (1965), Tittle and Robinson (1965), 
Mulholland and Cobble (1972), and more recently, Baker-
Jarvis and Inguva (1985). 

Perturbation techniques applied to unsteady conduction 
problems traditionally involve nonlinear thermal properties 
and boundary conditions or phase change. Aziz and Benzies 
(1976) give a solution for a semi-infinite region with 
temperature-dependent heat capacity. Temperature-
dependent thermal conductivity, specific heat, and heat 
transfer coefficient for a finite region were managed by Olsson 
(1970) using a perturbation expansion. Jiji and Weinbaum 
(1974) use singular perturbation methods for problems involv
ing melting and freezing. This note, however, presents a solu
tion based on a linear perturbation series as discussed by 
Bellman (1964) for solving second-order differential equations 
having variable coefficients. The small parameter evolves 
from a dimensionless, spatially dependent thermal conductivi
ty. To illustrate the technique, the example of a two-material, 
periodically layered semi-infinite solid is presented. The ther
mal conductivity is expressed as a Fourier series, while the 
specific heat and density of the layers are assumed equal. The 
perturbation expansion solution is carried out to first order, 
and is in good agreement with a numerical solution. 

Analysis 
Consider a semi-infinite medium initially at temperature J1,-

whose surface temperature is suddenly changed to 7^. The 

Advanced Engineering Analysis/Design, Sperry Corporation, Salt Lake 
City, UT 84116. 
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The one-dimensional conduction equation with associated 
boundary and initial conditions is 

dd _ 86 
— 

d2e dK 

dij2 d-q dt) 

,, = 0 , 0 = 1 ; r j -oo,0 = O; T = 0, 

= 0 

) = 0 

(2) 

(3) 

where the dimensionless parameters are defined as 

T-Tj 
T.-T, 1 = - / ' 

(*!+*2>f 
pel2 ' 

K ( l ) ) = 
ki+k2 

(4) 

Invoking a Laplace transform on equations (2) and (3) and in
troducing the small parameter 

«! — k2 

ki+k2 
(5) 

the governing equation with boundary and initial conditions 
becomes 

1 2e ^ . 
2 * « = i 

sin[(2/z-l)7n)]l #6 

2/2-1 

2e YJ cos[(2n-l)ir7j] 

J dv
2 

dd 
—p6 = 0 

ij=o, e=- y-

d-q 

= 0; r = 0, 0 = 0 

(6) 

(7) 

where p is the Laplace transform variable and 0 denotes the 
transformed temperature. From its definition, the value of e is 
guaranteed to satisfy - 1 < e < 1, so a first-order expansion 
of 0 in the parameter e is assumed giving 

0 = 00+60"! (8) 

Substituting equation (8) into equations (6) and (7) and in
verting to the original time variable, the zero order solution is 

9°=er fcGB (9) 

which is the standard solution for a semi-infinite solid but with 
the conductivity replaced by an average value of (fc, + k2)/2. 
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e 

v 
Fig. 1 Comparison of perturbation and numerical (finite difference) 
solutions of conduction in a two-material, periodically layered semi-
infinite medium for t = 0.1; perturbation solution; 
numerical solution 

9 

V 
Fig. 2 Comparison of perturbation and numerical (finite difference) 
solutions of conduction in a two-material, periodically layered semi-
infinite medium for c = 0.3; perturbation solution; 
numerical solution 

The first-order solution is 

I f , f 2 ( « - l ) e - x « ' 
2 l r C *" ^ 2 2 n ~ l 

A„(rj, T)sin[(2«-l)7nj] 

+ He~*»T[^rB»lv, T)+C„(V, r ) ] [ l - cos [ (2«- l )7 r r , ] ] ] 

where 

•A„(v, T ) ~ u-3/2exp(\2„u-ii2/2u)du 

B„(v, T) = ^oU-3/2(r,2/u-l)exp(k2
nu~r,2/2u)du 

C„(i?, T ) = Vu-W2exp(\2
nu-ri2/2u)du 

and 

(2n - 1)TT 
*„ = ' « = 1,2 ,3 

2V2 
(14) 

The integrals in equations (11), (12) and (13), which arise 
from performing the Laplace transform inversion, deserve 
some attention. Each of these integrals goes to infinity as T ap
proaches infinity or as an infinite number of terms is taken in 
the series. It can be shown, however, that the exponential 
terms which multiply the integrals go to zero faster than the in
tegrals go to infinity. As T goes to infinity, flj goes to zero, 
leaving the zero-order solution of 9 = 1 for all values of rj. In 
either case, provisions must be made in the chosen numerical 
integration scheme to prevent an exponential overflow and 
stop calculations when the exponential terms are sufficiently 
small. When the value of T is of order unity or higher, fewer 
than ten terms are required for convergence. As -q approaches 
infinity the integrals go to zero because of the negative ex
ponential terms in the integrands. An (77, T) goes to zero faster 

V 
Fig. 3 Comparison of perturbation and numerical (finite difference) 
solutions of conduction in a two-material, periodically layered semi-
infinite medium for e = 0.5; perturbation solution; 
numerical solution 

than 7] in front of An(-q, T) goes to infinity making the first 
series of equation (10) well behaved. Hence, d = 0 for ?j — 00 
as required by the second boundary condition. By inspection 
of equation (10), 6»! = 0 for rj = 0 and d = 1 for all values of r 
greater than zero as required by the first boundary condition. 
Finally, the integrals are identically zero for T = 0, and 0 = 0 
for all values of rj as required by the initial condition. 

It should also be noted that the series involving the cosine 
terms in equation (6) diverges for integer values of 17. Even 
though this seems to pose a mathematical difficulty, the 
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behavior of the first-order solution dictates that only a finite 
number of terms be taken, as previously discussed. 

Results and Discussion 
Equations (2) and (3) were solved numerically to check the 

accuracy of the perturbation solution. The Crank-Nicolson 
finite difference method was employed using step sizes of 0.1 
in both space and time. Using the exact zero-order solution as 
a standard, the accuracy of the Crank-Nicolson scheme for 
these step sizes for the case of ij = 3 and T = 1,3, and 9 was 
found to be within 0.3 percent. The thickness of the one-
dimensional region in the numerical model was made larger 
than the heat penetration depth for all values of T considered, 
and the temperature was maintained at zero on the back side 
to preserve the characteristics of a semi-infinite body. Figures 
1, 2, and 3 compare the perturbation and numerical solutions 
for e = 0.1, 0.3, and 0.5, respectively, for T = 1.0, 3.0, and 
9.0. The perturbation solution agrees favorably with the 
numerical solution for small values of e. The accuracy 
decreases, however, as e increases, especially at high values of 
T. Only positive values of e are given here; small negative 
values yield similar accuracy. The perturbation solution in
volves less computational time compared to finite difference 
methods, and clearly shows the small-scale temperature varia
tion within each layer. The curves shown for the perturbation 
solution were obtained using ten terms or fewer in the Fourier 
series for the thermal conductivity. 

A linear perturbation series has been used to find the 
temperatures within a periodically layered, semi-infinite 
medium. This method is reasonably accurate for e < 0.5. 
Larger values of e would require additional terms in the per
turbation expansion at the expense of a great deal of 
mathematics. The technique is applicable for a range of prac
tical problems in which the conductivities of the dissimilar 
layers are not drastically different, such as would be the case 
for insulation and metal. The mathematical approach can be 
applied to finite geometries and other boundary conditions, 
albeit the mathematics involved in finding particular integrals 
for the first order solution and performing the transform in
versions may be complex. Neither is the method restricted to 
two materials or layers of equal thickness. Any periodic ar
rangement of layers is amenable by the technique, assuming a 
small thermal conductivity parameter can be derived. The 
spatial periodicity of density times specific heat can be han
dled in a similar fashion by the appropriate definition of the 
dimensionless time variable. In this case, a two-parameter per
turbation expansion is required, one parameter for k(x) and a 
second for (pc) (x). 
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An Apparatus to Measure the Maximum Heat 
Transfer Rate in Heat Pipes 

J. H. Ambrose,1 L. C. Chow,1 and J. E. Beam2 

Introduction 

In an earlier investigation of evaporative heat transfer in 
low-temperature heat pipes, it was concluded (Ambrose et al., 
1985) that nucleate boiling was the dominating mechanism for 
heat removal from the wall. Experimental data for vaporiza
tion of water and freon in screen wicks was shown to agree 
well with a boiling correlation. Data used in the correlation 
were obtained from Abhat and Seban (1974) for a 
water/screen wick vaporization experiment and from Ponnap-
pan and Mahefkey (1983) for a copper/water double-wall 
artery heat pipe. 

During verification testing of this heat pipe, heat input to 
the evaporator was provided by electrical resistance heating. 
In such cases the evaporator wall heat flux is the independent 
parameter and the temperature drop across the evaporator is 
measured as a function of applied heat flux. The temperature 
drop is given by Tw-Ts, where Tw is the wall temperature and 
Ts is the saturated vapor temperature. The criterion used to 
signify that the maximum heat flux had been reached was an 
observed evaporator temperature drop larger than 10°C. 

Nucleate boiling in a heat pipe wick shows similarities to 
conventional nucleate pool boiling. For a constant heat flux 
boundary condition, the temperature drop T„ — Ts increases 
monotonically with increasing heat flux. For heat fluxes equal 
to or greater than the maximum heat flux qmm, the heated sur
face becomes partially exposed to vapor, resulting in a drastic 
decrease in the heat transfer coefficient. For pool boiling, the 
maximum heat flux is a result of Helmholtz instability of the 
vapor jets leaving the heated surface. In low-temperature heat 
pipes, before the boiling limit is reached, dryout will usually 
occur due to the inability of the wick to pump sufficient liquid 
to the evaporator (capillary limit). The capillary limit gmax is a 
limitation on total heat input rate Q for a given heat pipe. 

Temperatures in the heat pipe evaporator increase rapidly if 
the maximum heat input rate is maintained, and the rise in in
ternal pressure may cause failure of the container material. 
This is especially true for high-vapor-pressure working fluids 
such as ammonia and freon. 

In the experiment of Ponnappan and Mahefkey (1983), the 
reported maximum heat input rate was approximately 20 per
cent less than the predicted capillary limit to heat transport. It 
is possible that the maximum heat input was not actually 
reached in their experiment in order to avoid a severe dryout. 
In this paper, a unique apparatus is used to control the wall 
temperature of the heat pipe evaporator independently. With 
this method, an increase in Tw above that corresponding to 
<2max can only cause a decrease in Q. Although it is more dif
ficult to control the temperature than the heat flux, this 
method allows a more accurate determination of Qmax and 
precludes the possibility of runaway temperature. 
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behavior of the first-order solution dictates that only a finite 
number of terms be taken, as previously discussed. 

Results and Discussion 
Equations (2) and (3) were solved numerically to check the 

accuracy of the perturbation solution. The Crank-Nicolson 
finite difference method was employed using step sizes of 0.1 
in both space and time. Using the exact zero-order solution as 
a standard, the accuracy of the Crank-Nicolson scheme for 
these step sizes for the case of ij = 3 and T = 1,3, and 9 was 
found to be within 0.3 percent. The thickness of the one-
dimensional region in the numerical model was made larger 
than the heat penetration depth for all values of T considered, 
and the temperature was maintained at zero on the back side 
to preserve the characteristics of a semi-infinite body. Figures 
1, 2, and 3 compare the perturbation and numerical solutions 
for e = 0.1, 0.3, and 0.5, respectively, for T = 1.0, 3.0, and 
9.0. The perturbation solution agrees favorably with the 
numerical solution for small values of e. The accuracy 
decreases, however, as e increases, especially at high values of 
T. Only positive values of e are given here; small negative 
values yield similar accuracy. The perturbation solution in
volves less computational time compared to finite difference 
methods, and clearly shows the small-scale temperature varia
tion within each layer. The curves shown for the perturbation 
solution were obtained using ten terms or fewer in the Fourier 
series for the thermal conductivity. 

A linear perturbation series has been used to find the 
temperatures within a periodically layered, semi-infinite 
medium. This method is reasonably accurate for e < 0.5. 
Larger values of e would require additional terms in the per
turbation expansion at the expense of a great deal of 
mathematics. The technique is applicable for a range of prac
tical problems in which the conductivities of the dissimilar 
layers are not drastically different, such as would be the case 
for insulation and metal. The mathematical approach can be 
applied to finite geometries and other boundary conditions, 
albeit the mathematics involved in finding particular integrals 
for the first order solution and performing the transform in
versions may be complex. Neither is the method restricted to 
two materials or layers of equal thickness. Any periodic ar
rangement of layers is amenable by the technique, assuming a 
small thermal conductivity parameter can be derived. The 
spatial periodicity of density times specific heat can be han
dled in a similar fashion by the appropriate definition of the 
dimensionless time variable. In this case, a two-parameter per
turbation expansion is required, one parameter for k(x) and a 
second for (pc) (x). 
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Introduction 

In an earlier investigation of evaporative heat transfer in 
low-temperature heat pipes, it was concluded (Ambrose et al., 
1985) that nucleate boiling was the dominating mechanism for 
heat removal from the wall. Experimental data for vaporiza
tion of water and freon in screen wicks was shown to agree 
well with a boiling correlation. Data used in the correlation 
were obtained from Abhat and Seban (1974) for a 
water/screen wick vaporization experiment and from Ponnap-
pan and Mahefkey (1983) for a copper/water double-wall 
artery heat pipe. 

During verification testing of this heat pipe, heat input to 
the evaporator was provided by electrical resistance heating. 
In such cases the evaporator wall heat flux is the independent 
parameter and the temperature drop across the evaporator is 
measured as a function of applied heat flux. The temperature 
drop is given by Tw-Ts, where Tw is the wall temperature and 
Ts is the saturated vapor temperature. The criterion used to 
signify that the maximum heat flux had been reached was an 
observed evaporator temperature drop larger than 10°C. 

Nucleate boiling in a heat pipe wick shows similarities to 
conventional nucleate pool boiling. For a constant heat flux 
boundary condition, the temperature drop T„ — Ts increases 
monotonically with increasing heat flux. For heat fluxes equal 
to or greater than the maximum heat flux qmm, the heated sur
face becomes partially exposed to vapor, resulting in a drastic 
decrease in the heat transfer coefficient. For pool boiling, the 
maximum heat flux is a result of Helmholtz instability of the 
vapor jets leaving the heated surface. In low-temperature heat 
pipes, before the boiling limit is reached, dryout will usually 
occur due to the inability of the wick to pump sufficient liquid 
to the evaporator (capillary limit). The capillary limit gmax is a 
limitation on total heat input rate Q for a given heat pipe. 

Temperatures in the heat pipe evaporator increase rapidly if 
the maximum heat input rate is maintained, and the rise in in
ternal pressure may cause failure of the container material. 
This is especially true for high-vapor-pressure working fluids 
such as ammonia and freon. 

In the experiment of Ponnappan and Mahefkey (1983), the 
reported maximum heat input rate was approximately 20 per
cent less than the predicted capillary limit to heat transport. It 
is possible that the maximum heat input was not actually 
reached in their experiment in order to avoid a severe dryout. 
In this paper, a unique apparatus is used to control the wall 
temperature of the heat pipe evaporator independently. With 
this method, an increase in Tw above that corresponding to 
<2max can only cause a decrease in Q. Although it is more dif
ficult to control the temperature than the heat flux, this 
method allows a more accurate determination of Qmax and 
precludes the possibility of runaway temperature. 
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Experimental Apparatus 
The goal of the present work is to design and build an ap

paratus which allows an accurate measurement of Qmax for a 
low-temperature heat pipe. Direct condensation of steam on 
the evaporator wall is the means chosen to provide the high 
heat fluxes with excellent thermal stability. A controlled 
temperature boiler was designed by a group of mechanical 
engineering seniors as part of the requirements for a Thermal 
Systems Design course at Washington State University. It con
sists of a steam-generation vessel and a feedback control 
system. 

The steam-generation vessel is shown in Fig. 1. It is con
structed of standard 7.62 cm (3 in.) schedule 80 forged steel 
pipe with screwed fittings. Its configuration allows the heat 
pipe to be tested either horizontally or at positive tilt angles 
(condenser end raised) of up to 90 deg. Two 240 V, 2500 W 
immersion heaters are screwed into the lower legs of the vessel 
(one heater in each leg) and provide all necessary power. The 
heat pipe is inserted through a simple gland seal which is 
welded to the end cap of the upper leg of the vessel. Braided 
teflon packing is compressed in the gland seal around the heat 
pipe. With different followers and packing the vessel can ac
commodate varying heat pipe diameters of 1.5 to 3 cm. Screw
ed fittings welded to the upper leg are used to mount a 5.5 
MPa (800 psi) relief valve and a 1.27 cm (1/2 in.) forged steel 
gate valve. The gate valve is for evacuation and filling pur
poses. The entire vessel is wrapped with 10.2 to 15.2 cm (4 to 6 
in.) of fiberglass insulation to reduce the heat loss. 

For each test run, the steam vessel is thoroughly evacuated 
before filling with degassed, distilled water. Slightly over 4 
liters of liquid is added so that the liquid level will remain 
above the two immersion heaters and the upper pipe will be 
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Mean E v a p o r a t o r Tempera tu re °C 

Fig. 2 Heat input rate versus mean evaporator temperature 

filled with steam. Saturated conditions are verified by measur
ing the pressure and temperature of the steam. 

Steady-state heat losses from the steam vessel are measured 
by blocking the heat pipe gland seal with a short steel bar. 
Heat losses are plotted as a function of internal steam-vessel 
temperature, and the appropriate heat losses obtained from 
this curve are subtracted from each heat input rate reported. 

The feedback control system accurately maintains a given 
temperature in the steam vessel by thermostatically controlling 
one immersion heater. A key element to maintaining a con
stant vessel temperature is the large latent heat of the fluid, 
which acts as a buffer against the on and off pulses of the in
termittent heater. The other heater is set at a constant power 
level dependent upon the desired temperature. Feedback con
trol is facilitated by a microcomputer. Four type-K ther
mocouple probes, inserted through screwed compression fit
tings, sample the temperature of the heat pipe wall. The four 
temperature measurements are averaged every 20 s. If the dif
ference between the desired and average temperatures is 
greater than 0.28°C the intermittent heater is turned either on 
or off as required. Once set, the control system will maintain 
the mean evaporator temperature to within 0.6°C. The actual 
limits of deviation of the mean vessel temperature are more 
than those of the control system due to thermal lag. Both 
heaters are wired through rheostats so that the power levels 
may be varied between 0 and 2500 W. The total on time of the 
intermittent heater is recorded to calculate the average power 
input over the test period of 20 min. 

The heat pipe used for the tests is a double-wall artery heat 
pipe designed and fabricated at the Air Force Aero Propulsion 
Laboratory (Ponnappan and Mahefkey, 1983). The heat pipe 
is 1.20 m (47.2 in.) long and 2.22 cm (7/8 in.) in diameter, with 
20.32 cm (8 in.) long evaporator and condenser sections. It has 
a unique inner tube which separates the liquid and vapor flow 
paths, prohibiting entrainment of liquid by the vapor flow. 
Arteries are machined into the outer surface of the inner tube 
to provide low flow resistance for the liquid return. A 100 
mesh screen wick located in the annulus between the inner and 
outer tubes is responsible for the capillary pumping. 

Nine thermocouples are attached to the pipe along the 
adiabatic and condenser sections to monitor the axial 
temperature profile. Cooling is accomplished with a forced 
air/water droplet system. 

1024/Vol. 109, NOVEMBER 1987 Transactions of the ASME 

Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Results and Discussion 
Experimental data for horizontal operation of the heat pipe 

are given in Fig. 2. In this figure, the heat input rate (corrected 
for heat loss to the ambient) is plotted versus the evaporator 
wall temperature. The measured maximum value of 1768 W 
agrees well with the predicted value of 1790 W for Qmax. The 
measured value of Qmax is approximately 20 percent greater 
than that reported earlier by Ponnappan and Mahefkey 
(1983), which was measured by controlling the heat flux. 
There are two contributing factors to this difference. The first 
is the previously mentioned difficulty associated with main
taining heat input rates near Qmax. The second is that Qmax can 
be larger for the case of constant wall temperature than for 
constant wall heat flux. Qmax depends on the external 
evaporator boundary condition. A constant heat flux case is 
more severe since it requires that the same amount of liquid be 
supplied everywhere along the heated wall. Certain locations 
in the evaporator, such as the upper portion of the wall, have 
larger pumping requirements and will dryout first. For con
stant wall temperature, the heat flux and liquid supply may 
vary along the evaporator. With the constant-temperature 
boundary condition, the heat flux distribution will adjust itself 
so that heat is transferred in regions where liquid is available. 
This fact contributes to the larger Qmax obtained with the con
stant wall temperature boundary condition. 

Experimental Uncertainty 
The uncertainty limits for the evaporator, adiabatic, and 

condenser thermocouples are 0.6°C. The uncertainty limit of 
the heat input rate measurement is 13 W (at 1770 W). As a 
result of possible poor contact between the probe tips and the 
wall, the mean evaporator wall temperatures include an added 
uncertainty. Between tests, the heat pipe was removed from 
the steam vessel and replaced, causing reduced contact be
tween the thermocouple probes and the evaporator wall in the 
higher-temperature test runs. A difference of 6-11 °C between 
the four probe readings was observed for later tests, whereas 
during earlier tests, these were within 2-3°C. For each probe, 
the maximum estimated error due to poor probe contact is 
20°C. This value is an estimate of the temperature drop across 
a condensate layer formed on the evaporator wall at the max
imum heat input rate. Condensate layer thickness is based on 
laminar film condensation on a horizontal cylinder and found 
to be approximately 0.1 mm for this condition. Abscissas of 
the five highest temperature data points in Fig. 2 (all taken 
with constant probe positions) should be reduced by roughly 
the same amount. This error in wall temperature is in all cases 
positive and relatively constant because the thermal resistance 
of the condensate layer varies only slightly over the range of 
interest. Despite this error, the existence of the maximum heat 
input rate in Fig. 2 is established. 
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dimensionless wall temperature = 
{Tw-Te)/qR/Kf 

ratio of tube radius to length = 
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Subscripts 
b = bulk 

W = wall 

Introduction 
Whenever a superheated fluid flowing inside a tube is 

cooled to its saturated state, there is a sudden and significant 
increase in the heat transfer coefficient at the solid-fluid inter
face. Since the temperature of the fluid remains almost con
stant, this causes a step change in heat flux at the tube wall. 
This increased heat flux will increase the temperature of the 
tube wall. Even for thin wetted tubes, this temperature in
crease can cause considerable heat flow along the axial direc
tion of the tube. 

This axial conduction in the tube wall may have an influence 
on the rate of condensation of the fluid and the amount of 
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are given in Fig. 2. In this figure, the heat input rate (corrected 
for heat loss to the ambient) is plotted versus the evaporator 
wall temperature. The measured maximum value of 1768 W 
agrees well with the predicted value of 1790 W for Qmax. The 
measured value of Qmax is approximately 20 percent greater 
than that reported earlier by Ponnappan and Mahefkey 
(1983), which was measured by controlling the heat flux. 
There are two contributing factors to this difference. The first 
is the previously mentioned difficulty associated with main
taining heat input rates near Qmax. The second is that Qmax can 
be larger for the case of constant wall temperature than for 
constant wall heat flux. Qmax depends on the external 
evaporator boundary condition. A constant heat flux case is 
more severe since it requires that the same amount of liquid be 
supplied everywhere along the heated wall. Certain locations 
in the evaporator, such as the upper portion of the wall, have 
larger pumping requirements and will dryout first. For con
stant wall temperature, the heat flux and liquid supply may 
vary along the evaporator. With the constant-temperature 
boundary condition, the heat flux distribution will adjust itself 
so that heat is transferred in regions where liquid is available. 
This fact contributes to the larger Qmax obtained with the con
stant wall temperature boundary condition. 

Experimental Uncertainty 
The uncertainty limits for the evaporator, adiabatic, and 

condenser thermocouples are 0.6°C. The uncertainty limit of 
the heat input rate measurement is 13 W (at 1770 W). As a 
result of possible poor contact between the probe tips and the 
wall, the mean evaporator wall temperatures include an added 
uncertainty. Between tests, the heat pipe was removed from 
the steam vessel and replaced, causing reduced contact be
tween the thermocouple probes and the evaporator wall in the 
higher-temperature test runs. A difference of 6-11 °C between 
the four probe readings was observed for later tests, whereas 
during earlier tests, these were within 2-3°C. For each probe, 
the maximum estimated error due to poor probe contact is 
20°C. This value is an estimate of the temperature drop across 
a condensate layer formed on the evaporator wall at the max
imum heat input rate. Condensate layer thickness is based on 
laminar film condensation on a horizontal cylinder and found 
to be approximately 0.1 mm for this condition. Abscissas of 
the five highest temperature data points in Fig. 2 (all taken 
with constant probe positions) should be reduced by roughly 
the same amount. This error in wall temperature is in all cases 
positive and relatively constant because the thermal resistance 
of the condensate layer varies only slightly over the range of 
interest. Despite this error, the existence of the maximum heat 
input rate in Fig. 2 is established. 
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Introduction 
Whenever a superheated fluid flowing inside a tube is 

cooled to its saturated state, there is a sudden and significant 
increase in the heat transfer coefficient at the solid-fluid inter
face. Since the temperature of the fluid remains almost con
stant, this causes a step change in heat flux at the tube wall. 
This increased heat flux will increase the temperature of the 
tube wall. Even for thin wetted tubes, this temperature in
crease can cause considerable heat flow along the axial direc
tion of the tube. 

This axial conduction in the tube wall may have an influence 
on the rate of condensation of the fluid and the amount of 
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heat removed from the fluid flowing inside the tube. There are 
other situations, such as in power plants, where a step increase 
in heat flux to the tube may occur. Therefore, a detailed study 
of this effect of a step increase in heat transfer at a given loca
tion was initiated. 

A careful examination of the literature reveals that a con
siderable amount of work has been done in the area of con
jugate heat transfer in channel flows [1-7]. The present in
vestigation was prompted by the increase in heat transfer near 
the condensation point of a superheated vapor being cooled 
inside a circular pipe. The conjugate heat transfer with the 
added complexity of a two-phase flow prevented this exact 
problem from being solved. In order to reduce the complexity 
of the problem, the effects of axial tube wall conduction on 
the steady-state, laminar, convective heat transfer of a single-
phase fluid with a step change in heat flux were studied. 

Formulation of the Problem and Solution Technique 

Figure 1 shows a schematic diagram of the model used for 
the analysis. In this investigation, consideration is given to the 
heat transfer process of a single-phase fluid flowing inside a 
thin circular tube; the tube thermal resistance in the radial 
direction is neglected. The external surface of the tube wall is 
subjected to a constant heat flux q along its length except at 
the midpoint location. At this location an increased heat flux 
at the wall caused by a change of phase of the fluid is 
simulated by imposing an increased heat flux q', where 
q'=yg = 1, 10, 100, 1000, and 10,000. The increased heat 
flux is applied at the midpoint of the tube so that the effect of 
preheating on the wall temperature and the bulk temperature 
of the fluid upstream of the midpoint can be studied. 

The single-phase flow inside the tube is treated to be steady, 
laminar, and incompressible. In this investigation considera
tion is given to flows where Pe > 100, so that axial heat diffu
sion in the fluid along the direction of the fluid flow is 
neglected. Since only thin tubes are analyzed in this study, the 
tube end surface areas are negligibly small and are assumed to 
be adiabatic. With these simplifying assumptions, the energy 
equation for the tube wall in dimensionless form is 

£ " + 7 ( l + e / 0 ) _ =o (1) 
dX1 di? h = i 

with the following boundary conditions 

dX dX 
= 0 (2) 

In addition 7 = 1 except at x = 0.5 where Y > 1 . The energy 
equation for the fluid in dimensionless form is 

with the initial and boundary conditions 

96» I 
= 0 for all X 

drj lii = o 

8(X,1) = 6W{X), X>0 

0(O,r/) = O, X<0 
(4) 

2 dX 

dd d2e 
(3) 

The two energy equations (1) and (3) are coupled by the 
source term dd/d-q \ x in the tube wall energy equation and 
the boundary condition 6(X, 1) = 6W(X) in the fluid energy 
equation. In order to solve the fluid energy equation, a solu
tion to the tube energy equation is needed and vice versa. This 
problem is solved numerically using a finite difference 
method. 

An iterative approach was used to solve this conjugate heat 
transfer problem. The iteration procedure at the nth step is 
started by guessing the temperature field for both the tube wall 
and the fluid. The temperature field for the fluid at the 
(« + l)th iteration step is computed (solving equation (3)) by 
using the temperature field for the tube wall at the nth itera
tion step. The temperature field for the tube wall at the 
(n + l)th iteration step is computed (solving equation (1)) using 
the temperature field for the fluid at the (n + l)th iteration 
step. The temperature field for the fluid at the (n + 2)th itera
tion step is computed by using the temperature field for the 
tube wall at the (n + l)th iteration step. This process was con
tinued until both temperature fields cease to vary by more 
than 10 "6 for any two successive steps of iteration. The details 
of the computational algorithm are discussed in the following 
paragraph. 

The energy equation for the fluid field equation (3) is 
parabolic in the axial coordinate X and elliptic in the radial 
coordinate -q. This makes it possible to use a marching-type 
technique. The solution to the fluid energy equation is ob
tained by marching along the X direction, using a fully im
plicit method. The finite difference form of the fluid energy 
equation is obtained by replacing derivatives in the radial 
direction with the central difference and derivative in the axial 
direction with the up-wind difference. This type of discretiza
tion requires a solution for a set of simultaneous linear 
algebraic equations at each marching station. The tridiagonal 
matrix algorithm was used to solve the set of algebraic 
equations. 

The energy equation for the tube wall is elliptic in nature. 
The diffusion term in the ^direction is replaced by the central 
difference. The heat input term dd/d-q I , is replaced with the 
first-order difference (using two points). The finite difference 
equations for the nodes at the boundary were obtained by 
making an energy balance over each boundary control 
volume. These simultaneous equations are solved using the 
tridiagonal matrix algorithm. 

Results and Discussion 
The independent parameters governing this conjugated heat 

transfer problem are: thickness-to-length ratio of the tube 
(e = t/L), radius-to-length ratio of the tube {<t> = R/L), ratio of 
the thermal conductivity of the tube wall to that of the fluid 
flowing inside the tube (K=K„/Kf), ratio of the increased 
heat flux applied at the midpoint of the tube to the heat flux 
applied on the rest of the tube (y = q'/q), and the Graetz 
number (Gz = 2<£Pe). 

As stated earlier, consideration is given to thin tubes and 
conduction heat transfer in the fluid along the direction of the 
fluid flow is neglected. Hence, the Peclet number Pe was fixed 
at 500 and e was fixed at 0.001. The remaining parameters are 
<t>, K, and 7. The study of this problem for different values of 
these three independent parameters requires prohibitively 
large amounts of computation time, which was not available 
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for this investigation. Mori et al. [7] concluded that, for 
<A = 0.05 or less, the effect of wall conduction on convection 
was insignificant. In order to investigate the effect of axial 
wall conduction due to a step change in heat flux, 4> was set at 
0.05. This fixes the Graetz number at 50. The thermal conduc

tivity ratio (K=KW/Kf) varied from 0 to 5000 and 7 is varied 
from 1 to 10,000. 

After a series of numerical experiments where the grid size 
was varied over a wide range, it was determined that 41 was a 
sufficient number of grid points in the radial direction and 201 
in the axial direction. Uniform grid spacing was used, 
although the use of a nonuniform grid size may have saved 
some computer time. The accuracy of the computational 
algorithm developed in this investigation was tested by com
paring it with the results obtained by Siegel et al. [8] for 
laminar pipe flow with an inactive wall. The details of the 
comparison studies are discussed in [9]. For all values of X, 
the results of this work are within 4 percent of those obtained 
by Siegel et al. [8]. For higher values of X, the comparison is 
even better. 

Variations of the wall and the fluid bulk temperature for 
different values of K are shown in Figs. 2-6. The increased 
heat flux ( 7 = 1 , 10, 100, 1000, 10,000) is imposed at the mid
point of the tube. Henceforth, regions to the left and right of 
the midpoint will be referred to as upstream and downstream 
regions. Heat is transported downstream by advection. Inside 
the tube wall heat is transported both upstream and 
downstream by the axial conduction. At lower values of K, 
advection dominated the axial conduction inside the tube wall. 
As advection occurs always from an upstream to a 
downstream direction, only the wall and the fluid bulk 
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temperatures downstream are affected at low values of K. As 
the K value increases, a considerable amount of heat is 
transported upstream by conduction inside the tube wall. This 
causes the tube and the fluid bulk temperatures to increase 
upstream and to decrease downstream. 

As expected, both tube wall and the fluid bulk temperatures 
increase with an increase in 7. This behavior is observed in 
both upstream and downstream regions. A detailed discussion 
of the variation of the local Nusselt number at the solid fluid 
interface is given in [9]. 

The results for K=0 represent the case of a nonparticipating 
wall. The comparison of the tube wall temperature and the 
bulk temperature of the fluid for K=0 and if =5000 shows 
that they are significantly different for 1, but are not much 
different for 7 = 1 . This finding re-establishes the conclusion 
drawn by Mori et al. [7]. Hence, it is concluded that neglecting 
conduction effects in the analysis of the conjugate heat 
transfer problem inside a circular duct for cases of 7 > 1 could 
be erroneous. 

The computational algorithm developed in this investiga
tion was used to make spot checks for different values of Gz 
and e. At extremely high values of Gz and for extremely low 
values of e, solutions were found to be unstable. However, all 
stable solutions behaved in the same manner as results for 
Gz = 50 and e = 0.001. 

Some of the conclusive results obtained in this investigation 
can be qualitatively extrapolated to a case of a heat exchanger 
in which the fluid flowing inside a tube is undergoing a phase 
change. These extrapolations show that axial conduction heat 
transfer inside the tube wall preheats the fluid upstream. If 
superheated vapor were to condense inside the tube, the 
preheating effect will shift the condensation further 
downstream. Now, the area of the tube exposed to a two-
phase region is reduced, and hence to maintain the same heat 
transfer rate as in the absence of preheating, larger heat 
transfer area is needed. If a subcooled liquid were to evaporate 
inside the tube, the effect of preheating would be the reverse 
of the condensing case. Hence, it is recommended that tube 
materials with low thermal conductivity in the axial direction 
be used in condensers and those with high thermal conductiv
ity be used in evaporators. However, in both cases, the radial 
conduction resistance should be negligibly small. 
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Comparison of Turbulent Thermal Entrance Regions 
for Pipe Flows With Developed Velocity and Velocity 
Developing From a Sharp-Edged Inlet 

E. M. Sparrow1 and M. M. Ohadi1 

Introduction 
The thermal entrance region for turbulent flow in a circular 

tube has been analytically investigated for two types of veloci
ty distributions (Kays and Crawford, 1980). In one case, the 
flow is hydrodynamically developed throughout the entire 
length of the thermal entrance region. In the other, the veloci
ty is uniform at the inlet of the heated section, so that there is a 
hydrodynamic development of the flow which occurs 
simultaneously with the thermal development. The latter 
situation is rarely, if ever, encountered in practice and is, in 
fact, difficult to achieve in a laboratory experiment. 

The effect of various types of velocity distributions on the 
turbulent heat transfer coefficients in the thermal entrance 
region of an isothermal-walled tube was investigated ex
perimentally by Boelter et al. (1948). The different velocity 
distributions were attained by use of different configurations 
of the inlet of the heated section. As noted in Kays and 
Crawford (1980), the insufficiencies of the experimental 
technique used by Boelter et al. (1948) suggest that the results 
be regarded as qualitative rather than quantitative. 

The objective of the present research is to provide definitive 
thermal entrance region heat transfer results for an 
isothermal-walled tube for two types of turbulent velocity 
distributions that are of practical relevance. The two sets of 
results will be compared to yield the quantitative response of 
the thermal entrance region to the nature of the velocity condi
tion at the tube inlet. The work to be reported here is ex
perimental and covers the Reynolds number range from ap
proximately 5000 to 85,000. 

For one of the two investigated velocity distributions, the 
heated tube was preceded by an unheated hydrodynamic 
development tube. This setup yielded a fully developed veloci
ty profile at the inlet of the heated tube. The second case is 
that of the commonly encountered sharp-edged inlet. In par
ticular, the inlet was situated at the center of a large circular 
plate which simulated the downstream wall of a large plenum 
chamber. As is well established, the presence of a sharp-edged 
inlet gives rise to flow separation. 

A major issue in the attainment of accurate heat transfer 
coefficients in the immediate neighborhood of the inlet of the 
heated tube is the suppression of extraneous heat losses. 
Without special precautions, such extraneous losses would oc
cur between the heated tube and the hydrodynamic develop
ment tube, and between the heated tube and the circular plate 
which framed the sharp-edged inlet. To eliminate the losses 
totally, the experiments were performed using the naphthalene 
sublimation technique. The use of this technique also enabled 
the attainment of the isothermal-wall boundary condition (ac
tually, the mass transfer equivalent) while permitting local 
transfer coefficients to be measured. 

Experiments 

The respective experimental setups for the mass transfer 
tube fed by an upstream hydrodynamic development tube and 
for the mass transfer tube with a sharp-edged inlet are shown 
schematically in Fig. 1. The mass transfer tube was common 
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temperatures downstream are affected at low values of K. As 
the K value increases, a considerable amount of heat is 
transported upstream by conduction inside the tube wall. This 
causes the tube and the fluid bulk temperatures to increase 
upstream and to decrease downstream. 

As expected, both tube wall and the fluid bulk temperatures 
increase with an increase in 7. This behavior is observed in 
both upstream and downstream regions. A detailed discussion 
of the variation of the local Nusselt number at the solid fluid 
interface is given in [9]. 

The results for K=0 represent the case of a nonparticipating 
wall. The comparison of the tube wall temperature and the 
bulk temperature of the fluid for K=0 and if =5000 shows 
that they are significantly different for 1, but are not much 
different for 7 = 1 . This finding re-establishes the conclusion 
drawn by Mori et al. [7]. Hence, it is concluded that neglecting 
conduction effects in the analysis of the conjugate heat 
transfer problem inside a circular duct for cases of 7 > 1 could 
be erroneous. 

The computational algorithm developed in this investiga
tion was used to make spot checks for different values of Gz 
and e. At extremely high values of Gz and for extremely low 
values of e, solutions were found to be unstable. However, all 
stable solutions behaved in the same manner as results for 
Gz = 50 and e = 0.001. 

Some of the conclusive results obtained in this investigation 
can be qualitatively extrapolated to a case of a heat exchanger 
in which the fluid flowing inside a tube is undergoing a phase 
change. These extrapolations show that axial conduction heat 
transfer inside the tube wall preheats the fluid upstream. If 
superheated vapor were to condense inside the tube, the 
preheating effect will shift the condensation further 
downstream. Now, the area of the tube exposed to a two-
phase region is reduced, and hence to maintain the same heat 
transfer rate as in the absence of preheating, larger heat 
transfer area is needed. If a subcooled liquid were to evaporate 
inside the tube, the effect of preheating would be the reverse 
of the condensing case. Hence, it is recommended that tube 
materials with low thermal conductivity in the axial direction 
be used in condensers and those with high thermal conductiv
ity be used in evaporators. However, in both cases, the radial 
conduction resistance should be negligibly small. 
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Developing From a Sharp-Edged Inlet 
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Introduction 
The thermal entrance region for turbulent flow in a circular 

tube has been analytically investigated for two types of veloci
ty distributions (Kays and Crawford, 1980). In one case, the 
flow is hydrodynamically developed throughout the entire 
length of the thermal entrance region. In the other, the veloci
ty is uniform at the inlet of the heated section, so that there is a 
hydrodynamic development of the flow which occurs 
simultaneously with the thermal development. The latter 
situation is rarely, if ever, encountered in practice and is, in 
fact, difficult to achieve in a laboratory experiment. 

The effect of various types of velocity distributions on the 
turbulent heat transfer coefficients in the thermal entrance 
region of an isothermal-walled tube was investigated ex
perimentally by Boelter et al. (1948). The different velocity 
distributions were attained by use of different configurations 
of the inlet of the heated section. As noted in Kays and 
Crawford (1980), the insufficiencies of the experimental 
technique used by Boelter et al. (1948) suggest that the results 
be regarded as qualitative rather than quantitative. 

The objective of the present research is to provide definitive 
thermal entrance region heat transfer results for an 
isothermal-walled tube for two types of turbulent velocity 
distributions that are of practical relevance. The two sets of 
results will be compared to yield the quantitative response of 
the thermal entrance region to the nature of the velocity condi
tion at the tube inlet. The work to be reported here is ex
perimental and covers the Reynolds number range from ap
proximately 5000 to 85,000. 

For one of the two investigated velocity distributions, the 
heated tube was preceded by an unheated hydrodynamic 
development tube. This setup yielded a fully developed veloci
ty profile at the inlet of the heated tube. The second case is 
that of the commonly encountered sharp-edged inlet. In par
ticular, the inlet was situated at the center of a large circular 
plate which simulated the downstream wall of a large plenum 
chamber. As is well established, the presence of a sharp-edged 
inlet gives rise to flow separation. 

A major issue in the attainment of accurate heat transfer 
coefficients in the immediate neighborhood of the inlet of the 
heated tube is the suppression of extraneous heat losses. 
Without special precautions, such extraneous losses would oc
cur between the heated tube and the hydrodynamic develop
ment tube, and between the heated tube and the circular plate 
which framed the sharp-edged inlet. To eliminate the losses 
totally, the experiments were performed using the naphthalene 
sublimation technique. The use of this technique also enabled 
the attainment of the isothermal-wall boundary condition (ac
tually, the mass transfer equivalent) while permitting local 
transfer coefficients to be measured. 

Experiments 

The respective experimental setups for the mass transfer 
tube fed by an upstream hydrodynamic development tube and 
for the mass transfer tube with a sharp-edged inlet are shown 
schematically in Fig. 1. The mass transfer tube was common 

Department of Mechanical Engineering, University of Minnesota, Min
neapolis, MN 55455. 

Contributed by the Heat Transfer Division for publication in the JOURNAL OF 
HEAT TRANSFER. Manuscript received by the Heat Transfer Division October 
29, 1986. 

1028/Vol. 109, NOVEMBER 1987 Transactions of the ASME Copyright © 1987 by ASME
  Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



HYDRODYNAMIC NAPHTHALENE 
DEVELOPMENT TUBEv SURFACE-7 

(a) ^ M A S S TRANSFER 
ELEMENTS 

(b) 
SHARP-EDGED 
INLET 

Fig. 1 Experimental setups for mass transfer in a tube with (a) 
hydrodynamically developed flow throughout and (b) a sharp-edged inlet 

to both setups. It had an internal diameter D of 3.175 cm 
(1.250 in.) and an overall length of 20.42? (20.5D for the 
sharp-edged case). The tube was an assemblage of 21 mass 
transfer elements, of which numbers 1 through 7 each had an 
axial length of OAD, 8 through 13 a length of 0.8.D, and 14 
through 21 a length of \.6D (the first element for the sharp-
edged case was 0.52? in length). The use of shorter elements at 
the upstream end of the tube and longer elements farther 
downstream was in recognition of the relatively rapid varia
tions of the transfer coefficient which occur near the inlet and 
the gradual variations which occur in the downstream region. 

Each element consisted of a shell-like metallic exterior and 
an internal annular layer of naphthalene that was created by a 
casting procedure. The inner surface of the naphthalene (i.e., 
the surface which bounded the flow passage) was 
hydrodynamically smooth, having been cast against a highly 
polished and lapped brass shaft. The successive elements were 
interconnected by interlocking tongues and recesses that had 
been machined into the metallic portions, in a manner similar 
to that illustrated in Fig. 1 of Molki and Sparrow (1983). 
However, the mass transfer elements used here had longer 
tongues and recesses to ensure more precise axial alignment. 
Axial alignment (i.e., straightness) was further assured by the 
use of an adjustable support beneath the tube. Once the 
elements were assembled, the assembly was made into a single 
unit by pressure applied by quick-acting clamps. To seal 
against leaks, highly adhesive tape was applied to the outside 
of the tube at the interfaces of the successive elements. 

Two of the elements, numbers 1 and 21, were equipped with 
fine, precalibrated thermocouples that were cast in place such 
that the junctions were situated at the bounding surface of the 
flow passage. 

The detailed configuration of the mass transfer elements, 
their fabrication, and their assembly is described by Ohadi 
(1986). The casting procedure used here is generally similar to 
that of Molki and Sparrow (1983) and illustrated in Fig. 2 of 
that reference. Refinements of the casting equipment and pro
cedure are set forth by Ohadi (1986). 

The condition of hydrodynamically developed flow 
throughout the mass transfer section was achieved by means 
of an upstream-positioned tube that did not participate in the 
mass transfer (Fig. la). Nonparticipation was assured by mak
ing the tube from a metal, specifically, aluminum. The 
diameter of the upstream tube was identical to that of the mass 
transfer tube (3.175 cm), and its length was 30D. To hasten 
hydrodynamic development, the inlet to the upstream tube 
was sharp-edged. Taps installed in the tube indicated a linear 
decrease of pressure with distance, thereby confirming 
hydrodynamic development. The two tubes were mated via a 
special flange which guaranteed colinearity. 

For the sharp-edged case (Fig. lb), the tube inlet was 
framed by a circular aluminum plate whose diameter was 
equal to 16£>. With the plate in place, air was supplied to the 

mass transfer tube from the space upstream of the inlet, which 
thereby served as a large plenum chamber. The upstream face 
of the first mass transfer element was shielded from exposure 
to the airflow by a thin metal sheet (thickness = 0.02Z>). 

The apparatus was operated in the suction mode, with air 
drawn from the temperature-controlled laboratory and with 
the naphthalene-enriched discharge vented outside the 
building. The mass of each mass transfer element was 
measured before and after each data run to determine the per-
element mass transfer rate M. A painstaking experimental 
technique was developed and employed as set forth by Ohadi 
(1986). The accuracy of the Sherwood number data is 
estimated to be about 2 percent. 

Results and Discussion 
For any element /', the mass transfer coefficient K, and Sher

wood number Sh,- were evaluated by 

tf,.=M,.A4/(P™-Pn*,,)> Sh,=Kfi/S> (1) 

where the bulk density of the naphthalene vapor a t ; is given 
by 

; - i 
P«bj='£Mj/&+(Ml/&/2 (2) 

in which As is the transfer surface area of element i, Q is the 
volumetric flow rate, and SD is the mass diffusion coefficient. 
The naphthalene vapor p„w at the tube wall was computed 
from the measured uniform wall temperature of the 
naphthalene in conjunction with the vapor pressure/tempera
ture relation (Sogin, 1958) and the perfect gas law. The mass 
diffusion coefficient was eliminated via the relation £> = p/Sc, 
where the Schmidt number is 2.5 (Sogin, 1958) and v is the 
kinematic viscosity of air. 

The Reynolds number Re is that for a conventional tube 
flow 

Re = 4w//*?r.D (3) 

where w is the mass flow rate and D is the inside diameter of 
the tube. 

The Sherwood number results determined as described in 
the foregoing are plotted in Figs. 2 and 3 as a function of the 
dimensionless axial coordinate x/D, where x is measured from 
the beginning of the mass transfer section. Each data point 
represents the Sherwood number for an individual mass 
transfer element, and the point is plotted at the x/D value at 
the axial midpoint of the element. Although the data are 
quasi-local rather than strictly local, the selected sizes and 
positioning of the mass transfer elements are most than suffi
cient to resolve the Sh versus x/D distribution. 

Figure 2 conveys results for the lower end of the investigated 
Reynolds number range (5000-15,000) while Fig. 3 is for the 
higher end of the range (24,000-84,000). For each Reynolds 
number, the open symbols are for the case of the sharp-edged 
inlet, while the black symbols are for the case of the tube-fed 
inlet (i.e., hydrodynamically developed flow). For all 
Reynolds numbers except the lowest, the respective Re values 
for the two cases coincide within 0.8-1.6 percent. However, at 
the lowest Reynolds number, there is a 5 percent spread in the 
Re values. As will be seen shortly, this spread will affect the 
appearance, but not the substance, of the Sh comparison be
tween the cases. 

All of the axial distributions for the tube-fed-inlet case share 
a common shape, while those for the sharp-edged-inlet case 
have a different common shape. For the former, the max
imum value of the transfer coefficient is attained at the inlet of 
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the mass transfer tube, and with increasing downstream 
distance the coefficient decreases monotonically to a constant, 
fully developed value. This pattern reflects the orderly growth 

of the thermal boundary layer. The Sh distribution for the 
sharp-edged case is characterized by an initial sharp rise, the 
attainment of a maximum at x/D~ 0.65, and a decrease which 
ultimately levels off to a fully developed value. This behavior 
is characteristic of flow separation and reattachment, and 
post-separation redevelopment. 

In the mass transfer entrance region, the transfer coeffi
cients for the sharp-edged-inlet case always exceed those for 
the tube-fed-inlet case. The greatest deviations occur at the ax
ial station where the coefficients for the former attain their 
maximum, i.e., atx/D~0.65. At that station, the ratio of the 
sharp-edged Sh to the tube-fed Sh takes on the values 2.6, 2.8 
2.5, 2.3, 2.2, 2.1, and 1.9 as Re ranges from the lowest to the 
highest of the investigated values. Thus, there are major devia
tions between the two cases - factors of two or three. Except 
at the lowest Reynolds number, the aforementioned ratio 
decreases monotonically with Re. The exception may be due to 
the imperfect match of the Reynolds numbers (5130 versus 
5400). 

Significant but much smaller deviations occur at the first 
measurement station, x/D~0.2. For Reynolds numbers of 
15,000 and higher, the sharp-edged Sh exceed the tube-fed Sh 
by 30-40 percent. At the lower Re, the differences are quite 
small. 

Downstream of the maximum of the sharp-edged Sh 
distribution, the two Sh distributions begin to draw together. 
Atx/D~2.2, the sharp-edged Sh exceed the tube-fed Sh by 45 
to 20 percent as Re increases over the investigated range. 
These deviations are still appreciable but their magnitudes, 
relative to those at the maximum, reflect the drawing together 
of the curves. 

The deviations between the two distributions diminish to 
about 5 percent at x/D ~ 6, so that significant effects of the 
velocity distribution on the local Sherwood numbers are con
fined to Q<x/D<6. Complete overlap of the distributions oc
curs for x/D>W for Re up to 25,000 and for x/D>\2 at 
higher Re. 

The attainment of the same fully developed Sh values for 
the two cases is expected. The fact that this expectation was 
fulfilled in the experiments reinforces the experimental tech
nique. The noncoincidence at the lowest Reynolds number is 
due to the imperfect matching of the respective Re values. 

The fully developed Sherwood numbers are compared in 
Fig. 4 with the well-established correlation of Petukhov-
Popov (1970), which applies for Re > 10,000, and with its 
generalization by Gnielinski (1976) into the low-Re turbulent 
range. The agreement of the data with the correlations is ex
cellent, thereby lending further support to the accuracy of the 
experimental results. 
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Instabilities of Mixed Convection Flows Adjacent to
Inclined Plates

H. I. Abu-Mulaweh,1 B. F. Armaly,1 and T. S. Chen l

Introduction

The measurements by Sparrow and Husar (1969) and by
Lloyd and Sparrow (1970) established that the onset of in
stability (transition from laminar to turbulent) in free convec
tion boundary layer flow above an inclined heated plate is
predominated by the wave mode of instability for inclination
angles less than 14 deg, as measured from the vertical, and by
the vortex mode of instability for angles greater than 17 deg.
The transition Grashof number decreased as the angle of in
clination increased. The predictions of Chen and Tzuoo (1982)
for this flow provide trends that are similar to measured
values, but the predicted critical Grashof numbers deviate
significantly (three orders of magnitude smaller) from
measured values. The instability of mixed convection bound
ary layer flow adjacent to inclined heated plates have also been
treated numerically by Chen and Mucoglu (1979) for wave
instability and by Chen et al. (1982) for vortex instability.
Comparisons with measurements could not be done in these
studies because measurements of instability in mixed convec
tion flow adjacent to inclined plates were not available in the
literature. It is anticipated, however, that these predictions
will underestimate the actual onset of instability, as in the free
convection case. The lack of measurements in this flow do
main for this geometry has motivated the present study.

The onset of instability in mixed convection flow adjacent
to an isothermally heated inclined plate was determined in this
study through flow visualization. The buoyancy-assisting and
buoyancy-opposing flow cases were examined for the flow
both above and below the heated plate. The critical
Grashof-Reynolds number relationships for the onset of in
stability in this flow domain are reported in this paper.

Apparatus and Procedure

This flow visualization study was performed in an open cir
cuit wind tunnel which could be rotated and fixed at any
desired inclination angle from 0 to 360 deg. The free-stream
flow remains laminar and parallel to the heated plate at any
angle of inclination. Details of the tunnel, heated plate, and
other instrumentation have been described by Ramachandran
et al. (1985). The free-stream velocity in the tunnel could be
varied between 0.3-3 mls and the plate temperature could be
maintained at a uniform and constant value in the range of
20°_100°C. The uncertainty associated with the temperature
measurements was determined to be 0.1 °C, and for the veloc
ity measurements it was 2 percent. Flow visualizations were
performed by using a 15 W collimated white light beam, 2.5
cm in diameter. The flow was seeded by glycerin particles, 2-5
!Lm in diameter, which served as scattering centers for visualiz
ing the flow. These particles also served as seeds for the
measurements of the free-stream velocity by a laser-Doppler
velocimeter.

The onset of instability was determined through flow
visualization at different inclination angles, in 15 deg in
crements, throughout the entire 360 deg rotation domain of
the tunnel. The procedure consisted of the following steps.
The tunnel was fixed at a selected inclination angle and the
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plate was heated to a desired fixed and uniform temperature,
while a particular constant free-stream velocity was main
tained in the tunnel. Flow visualization started after steady
state conditions were achieved (steady state required approx
imately 4 hours of operation). The collimated light beam,
which was placed parallel to the heated surface and perpen
dicular to the direction of the flow, was traversed in the direc
tion of the flow and away from the leading edge of the heated
plate, until an instability was detected visually inside the
boundary layer. The scattered light beam, which crossed the
width of the heated plate, was viewed perpendicularly from a
downstream location, which made the detection of a small
disturbance in the flow possible. The start of instability was
established as the plane on which the two-dimensional flow
was transformed to a three-dimensional vortex flow. The loca
tion of the plane (critical distance) along with the plate
temperature and the free-stream velocity were used to
calculate the critical Grashof and Reynolds numbers. The
uncertainty and the repeatability of this critical distance as
determined from the flow visualization are within the 2 per
cent. The thermophysical properties that were used in these
calculations were evaluated at the average film temperature.
For a given inclination angle, four different free-stream
velocities, in the range of 0.3-1.2 mis, were examined for each
fixed plate temperature. Similarly, for each inclination angle
four different plate temperatures, in the range of 35 ° - 75°C,
were examined while room temperature was maintained at
21 °C. These observations generated a large set of data
documenting the influence of the various parameters on the
instability of such a flow.

Results and Discussion

A sample of the flow visualization patterns obtained in this
study is shown in Fig. 1 for the case of flow above a horizontal
heated plate. Each image in that figure represents a view of the
flow at the planes indicated (X = 12.7 cm, 22.9 cm, 25.4 cm,
and 30.5 cm) as seen from a downstream location in the test
section. The collimated light beam and the seeded air flow
provide the light scattering required at the plane for flow
visualization. Any disturbance that is responsible for second
ary motion in the flow can be easily detected by the presence
of a darker background indicating the pattern of the second
ary flow. The figure clearly illustrates a region of tWo
dimensional laminar and stable flow at small downstream

x~12.7clD

x • 25.4 Crtl

Fig. 1 Incipience and growth of vortex rolls In flow above horizontal
heated plate; U"" == 0.34 mis, (Tw - T",,) == 30'C
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distances from the leading edge, followed by the onset of vor
tices which breaks the two-dimensional nature of the flow, 
and followed further by a region where the vortices develop 
and grow until they break down (not shown in this figure), 
thus developing into a two-dimensional turbulent flow do
main. The start/onset of the instability, which is the important 
parameter for this study, can clearly be identified from this 
flow visualization technique. 

The critical Reynolds and Grashof numbers for an upward-
facing buoyancy-assisting flow as determined from flow 
visualization are presented in Fig. 2. The results for inclination 
angles 15 deg < 8 < 60 deg, as measured from the horizontal 
axis, can be correlated by the following linear relation 

Gr,.cos0 = 4.7xlO4Re1. (1) 

The critical Grashof and Reynolds numbers have the standard 
definition and are based on the critical streamwise location 
identifying the onset of vortex instability. The critical 
Reynolds and Grashof number ranges which were used to 
establish this correlation are 8 x 103 < Re^ < 3 x 104 and 
4 x 108 < Gr, < 3 x 109. The results indicate that the onset of 
vortex instability is delayed by increasing the free-stream 
velocity or the inclination angle (as measured from the 
horizontal) and by decreasing the temperature difference be
tween the plate and the free stream. The region above the line 
in Fig. 2 is the unstable region, while the one below the line is 
the stable region. The numerical predictions of Chen et al. 
(1982) provide similar trends, but predict transition Grashof 
numbers that are approximately two orders of magnitude 
smaller than those measured for a given Reynolds number. In
stability was not detected for angles larger than 60 deg in the 
range of experimental conditions. In a similar fashion, the 
downward-facing buoyancy-assisting flow case was explored 
for instabilities. As expected, none was detected for this 
geometry, thus verifying a stable flow for the range of ex
perimental conditions. 

The case of the upward-facing horizontal heated plate is not 
included in the above correlation. Moharreri (1986) examined 
the temperature and the velocity fields in more detail, and 
reported the following relation for the onset of the vortex in
stability 

This relation is similar to the one proposed by Wu and Cheng 
(1976) for water flow above a horizontal heated plate. The 
critical Reynolds and Grashof number ranges which were used 
to establish this correlation are 2 x 103 < Rex < 2 x 104 and 
6 x l 0 6 < GTX < 2 x l 0 8 . 

The buoyancy-opposing flow with inclination angles of 15 
deg < a < 75 deg for downward-facing plate and inclination 
angles of 15 deg < a < 45 deg for upward-facing plate (as 
measured from the vertical axis) displayed similar behavior by 
developing a region of flow reversal inside the boundary layer 
which starts at some critical streamwise location from the 
leading edge. The reversed flow region was confined to a 
shallow layer of a certain length, i.e., a recirculating pocket 
within the boundary layer. Beyond that region the flow 
displayed turbulent flow characteristic without any reversed 
flow region. The critical Grashof and Reynolds numbers iden
tifying the start of the reversed flow region and the start of the 
turbulent flow region are presented for different inclination 
angles in Fig. 3. These results can be correlated by the follow
ing relations: 

For the start of reversed flow region 

G r i c o s a = 0.270Re2 

For the start of turbulent flow region 

Grr cos a = 0.365 Rel 

(3) 

Gr, = 100 Re'-5 
(2) 

(4) 

The region presented below these lines in Fig. 3 is the stable 
region. The length of the stable region, as measured from the 
leading edge of the heated plate, increases as the free-stream 
velocity or the inclination angle a increases and as the 
temperature difference between the plate and the free stream 
decreases. The critical Reynolds and Grashof number ranges 
which were used to establish the above two correlations are 
2.5 xlO3 < Rex < 7 x l 0 4 a n d 2 x l 0 6 < GTX < 3.5xlO9 . 

The upward-facing buoyancy-opposing flows with inclina
tion angles a greater than 45 deg, as measured from the ver
tical, displayed different transition characteristics than the 
previously discussed case of inclination angles that are smaller 
or equal to 45 deg. The flow displayed a vortex mode of in
stability with the critical Grashof and Reynolds numbers as 
presented in Fig. 4. These results can be correlated by the 
following relation: 
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Grx cos a = 0.210 Re2 (5) 

The region below the line is the stable region which is influ
enced, in the same way as discussed in the previous paragraph, 
by the magnitude of the free-stream velocity, the inclination 
angle, and the temperature difference. The critical Reynolds 
and Grashof number ranges which were used to establish the 
above correlation are 4 x 103 < Rex < 3.5 x 104 and 1.5 x 107 

< Gr^ < 5x10 s . 

Conclusions 

The onset of instability in mixed convection flow adjacent 
to isothermal heated inclined plates was determined for 
buoyancy-assisting and buoyancy-opposing flows and for 
flow above and below the heated plate. The results are sum
marized in terms of simple correlations between the critical 
Grashof and Reynolds numbers. The length of the stable 
region increases by increasing the free-stream velocity and the 
inclination angle, 6 or a, but decreases as the temperature dif
ference between the plate and the free stream increases. The 
results presented should aid in limiting the applicability of the 
two-dimensional, laminar mixed convection flow solutions to 
this flow geometry. 
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Mixed Convection Flow About Slender Bodies of 
Revolution 

J. L. S. Chen1 

1 Introduction 
Heat transfer from a thin needle or a slender body of 

revolution has been studied by many investigators for the case 
of either forced convection [1, 2] or free convection [3-6]. The 
problem of heat transfer by combined free and forced convec
tion from vertical thin needles with the surfaces maintained at 
a uniform temperature or uniform heat flux has been analyzed 
by Narain and Uberoi [7, 8]. 

This paper deals with the subject of combined convection 
heat transfer in laminar axial boundary-layer flows about ver
tical slender bodies of revolution with variable surface 
temperature or variable surface heat flux. The analysis is 
directed toward the aspect of similarity flow of the subject 
problem. It has been found that similarity solutions exist when 
(0 the surface temperature varies as x (2m" : ) , and (;'/) the sur
face heat flux varies as x ( 5 m - 3 ) / 2 , where x is the axial coor
dinate measured from the front stagnation of the body and m 
is an arbitrary constant. Similarity velocity and temperature 
profiles as well as local skin-friction coefficient and Nusselt 
number have been obtained for various shapes and sizes of the 
body and presented in graphic forms. 

2 Similarity Analysis 
Consider a steady-state, incompressible, laminar flow past a 

thin vertical axisymmetric body. The free-stream velocity is 
assumed to vary according to xm. The ambient fluid is main
tained at a constant temperature T„, while the body surface is 
at either variable temperature Tw(x) or variable heat flux 
q„ {x). It is assumed that the heat is transferred from the body 
to the fluid so that the buoyancy force aids the forced convec
tion in the same direction. Under the assumption of constant 
fluid properties except for density change due to temperature 
change, the conservation equations for the axisymmetric 
boundary layers may be written as 

1M + Ii^ = 0 (1) 
dx dr 

du du rdU n „ „ N v d ( du \ 

dx dr dx r dr \ dr t 

dT dT a d ( dT\ 
u + v = ( r _ ^ (3) 

dx dr r dr V dr I 

where {x, r) are the axial and radial coordinates, respectively, 
with the origin placed at the front stagnation point of the 
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Grx cos a = 0.210 Re2 (5) 

The region below the line is the stable region which is influ
enced, in the same way as discussed in the previous paragraph, 
by the magnitude of the free-stream velocity, the inclination 
angle, and the temperature difference. The critical Reynolds 
and Grashof number ranges which were used to establish the 
above correlation are 4 x 103 < Rex < 3.5 x 104 and 1.5 x 107 

< Gr^ < 5x10 s . 

Conclusions 

The onset of instability in mixed convection flow adjacent 
to isothermal heated inclined plates was determined for 
buoyancy-assisting and buoyancy-opposing flows and for 
flow above and below the heated plate. The results are sum
marized in terms of simple correlations between the critical 
Grashof and Reynolds numbers. The length of the stable 
region increases by increasing the free-stream velocity and the 
inclination angle, 6 or a, but decreases as the temperature dif
ference between the plate and the free stream increases. The 
results presented should aid in limiting the applicability of the 
two-dimensional, laminar mixed convection flow solutions to 
this flow geometry. 
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Mixed Convection Flow About Slender Bodies of 
Revolution 

J. L. S. Chen1 

1 Introduction 
Heat transfer from a thin needle or a slender body of 

revolution has been studied by many investigators for the case 
of either forced convection [1, 2] or free convection [3-6]. The 
problem of heat transfer by combined free and forced convec
tion from vertical thin needles with the surfaces maintained at 
a uniform temperature or uniform heat flux has been analyzed 
by Narain and Uberoi [7, 8]. 

This paper deals with the subject of combined convection 
heat transfer in laminar axial boundary-layer flows about ver
tical slender bodies of revolution with variable surface 
temperature or variable surface heat flux. The analysis is 
directed toward the aspect of similarity flow of the subject 
problem. It has been found that similarity solutions exist when 
(0 the surface temperature varies as x (2m" : ) , and (;'/) the sur
face heat flux varies as x ( 5 m - 3 ) / 2 , where x is the axial coor
dinate measured from the front stagnation of the body and m 
is an arbitrary constant. Similarity velocity and temperature 
profiles as well as local skin-friction coefficient and Nusselt 
number have been obtained for various shapes and sizes of the 
body and presented in graphic forms. 

2 Similarity Analysis 
Consider a steady-state, incompressible, laminar flow past a 

thin vertical axisymmetric body. The free-stream velocity is 
assumed to vary according to xm. The ambient fluid is main
tained at a constant temperature T„, while the body surface is 
at either variable temperature Tw(x) or variable heat flux 
q„ {x). It is assumed that the heat is transferred from the body 
to the fluid so that the buoyancy force aids the forced convec
tion in the same direction. Under the assumption of constant 
fluid properties except for density change due to temperature 
change, the conservation equations for the axisymmetric 
boundary layers may be written as 

1M + Ii^ = 0 (1) 
dx dr 

du du rdU n „ „ N v d ( du \ 

dx dr dx r dr \ dr t 

dT dT a d ( dT\ 
u + v = ( r _ ^ (3) 

dx dr r dr V dr I 

where {x, r) are the axial and radial coordinates, respectively, 
with the origin placed at the front stagnation point of the 
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body; (u, v) are the velocity components in these directions; g 
is the gravitational acceleration; (3 is the coefficient of thermal 
expansion, v the kinematic viscosity, and a the fluid thermal 
diffusivity; U(x) = ulx

m is the mainstream velocity; and Tis 
the fluid temperature. It is noted that the axial pressure gra
dient term UdU/dx in equation (2) is externally imposed 
which, for example, may result from the contouring of a chan
nel wall afar from the body [9]. The boundary conditions at 
the outer edges of the boundary layers are 

u = U(x); T=Ta (4) r—co; 

and at the body surface 

r = R(x): u = v = 0; T=Tw 
dT 

or 
qw(x) 

(5) 
dr k 

where R (x) prescribes the surface shape of the axisymmetric 
body; Tw(x) and qw(x) are the wall temperature and wall 
heat flux, respectively; and k is the thermal conductivity of the 
fluid. 

To transform equation (1) to (5), we first introduce an ax
isymmetric stream function ^ and a similarity variable z de
fined by 

i> = vxf(z) (6) 

z=(ul/v)xm-lr2 (7) 

Setting z = a, where a is a constant and is numerically small for 
a slender body, equation (7) prescribes both shape and size of 
the body with its surface given by 

R(x)=(—a) 2x 2 (8) 

Of practical interest are pointed bodies and cylinders for 
which we must have, from equation (8), m< 1. For example, 
the body is a cylinder when m = 1, a paraboloid when m = 0, 
and a cone when m = - 1. 

The continuity equation (1) is identically satisfied if the 
velocity components are expressed as 

u=2Uf, v = • -\f+(m-\)zf'] (9) 

where the primes denote differentiation with respect to z. 
What follows are two sets of transformations for the two cases 
nnder consideration. 

Bodies With Variable Wall Temperature. Define a dimen-
sionless temperature 

T—T 

HZ)= T _ " do) 
It can be readily shown that, using equations (6), (7), and (9), 
the governing equations (2) and (3) reduce to ordinary dif
ferential equations in z if 

Tw = T„ + TlX> (11) 

and 

s = 2m-l (12) 

The resulting transformed equations are 

Szf'" + 4(2 +f)f" + X0 + m[l - 4(f)2] = 0 

2z6 " + (2 + Pr/)0' - sPrf 0 = 0 

with the boundary conditions 

/(«)=/'(«) = 0; /'(«) = J -

0(a) = 1; 0(oo) = o 

(13) 

(14) 

(15) 

(16) 

Pr = 
Gr figTi 

Re2 

Re = 

Gr = 

Ux 

v 

^g(Tw-T^ 

(17) 

Thus, for the mixed convection problem under considera
tion, similarity solutions exist only for a restricted power-law 
surface temperature distribution given by equation (11) with 
the restriction (12). For the case of pure forced convection, 
however, Chen and Smith [2] have shown that restriction (12) 
is not necessary, i.e., s is independent of m and may be an ar
bitrary constant. On the other hand, the mixed convection 
parameter X is an indicator of the relative effect of buoyancy 
upon forced convection. When A = 0 equations (13)-(16) are 
reduced to those for the case of pure forced convection 
reported in [2]. 

It is noted that the transformation that led to equations 
(13)—(17) was patterned after that for pure forced convection. 
When the buoyancy effect becomes increasingly large, so does 
the value of X. In the limit as X—oo, pure free convection ex
ists. Numerical integrations of equations (13)—(17) become in
creasingly difficult with larger values of X. To minimize this 
difficulty, we may, alternatively, employ the following 
transformation patterned after that for pure free convection: 

^o = "xf0(z0), z0 = *" 
V 

u = 2\v> Ufi, v= - — f t + (m - lfco/g] 

0o(Zo)=-
T-T„ 

(18a) 

(18b) 

(18c) 

where c = (g^Tl)
Vl, and the primes now denote differentiation 

with respect to z0- Substituting equation (18) into (2)-(5) yields 

820/0"+ 4(2 +/0)/o"+ 0O - 2(s + Wo")2 + - — = 0 
A 

with 

2zo0<;'+ (2 + Pr/o)0o' - sPrfi0o = 0 

/o(«o) =/o(«o) = : /o (« ) = -y-X- Vl 

fl0(«o) = i ; 0<,(°°) = o 

(19) 

(20) 

(21) 

(22) 

When X—00, equations (19)-(22) reduce to those for the case 
of pure free convection obtained by Chen [5], During the 
course of numerical integrations, equations (13)—(16) will be 
used for small and intermediate values of X and the alternate 
set of equations (19)-(22) for intermediate and large values of 
X. The two sets of equations should give the same results. 

The local skin-friction coefficient is given by 

C) = 2 V ( — ) /c^ = 8a ' / !Re-V"(a) (23) 

and the local Nusselt number is 

Nu = -
( — ) 
\ dr /w -=-2(aRe)' / 20'(a) 

where 

(24) 

It is noted that, owing to the familiar boundary layer ap
proximations that both the viscous and thermal diffusions in 
the flow direction are small as compared to those in the direc
tion normal to the flow, the use of du/dr and dT/dr instead of 
du/dn and dT/dn (where n is normal to the body surface) in 
equations (23) and (24), respectively, has been made. 
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Bodies With Variable Wall Heat Flux. In this case we define 
a dimensionless temperature 

xqw 

5m-3 

0(z)=2(aRe)' 

It can be shown that if 

qw=qlxP and p 

the similarity equations are 

8s/"" + 4(2 +M" +<?6 + m[l - 4(/')2] = 0 

2z0 " + (2 + Pr/)0' -(2m- l )Pr/ ' 0 = 0 

with 

(25) 

(26) 

(27) 

(28) 

(29) 

in which 

Gr,„ 
Re2 (-£-)'• Gr„ 

WAr 

2kv2 -(<?Re)" 

(30) 

(31) 

\ 2k ) \auj 2k 

The parameter a, similar to X in the preceding case, measures 
the relative importance of free convection over forced convec
tion. It is noted that when p = 0, equations (26)-(31) are re
duced to the special case of uniform wall heat flux treated by 
Narain and Uberoi [8], When a = 0, the heat transfer mode is 
pure forced convection, and equations (27)-(30) are the same • 
as those obtained in [2]. 

For large a, a set of alternate similarity equations may be 
obtained by using the transformations (18a) and (18ft) 
modified by replacing X by a and c by c0. The transformed 
equations are 

m 8 Vo"' + 4(2 +/0 W + 0o" 4m {ftf + = 0 
a 

2za6Z+ (2 + Pr / 0 W - (2m - l ) P r / A = 0 

with 

/o(«o)=/o(ffo) = 0; fi(co) = — a- 'A 

(32) 

(33) 

(34) 

(35) 0o'(«o) = - * " * ; 0o(°°)=o 
By setting <r-» oo, the problem described by equations (32)-(35) 
becomes the case of pure free convection reported by Chen 
[6]. 

The local skin-friction coefficient and Nusselt number are 
given by, respectively, 

Cf=8av'Re-'Af"(a) (36) 

xqw 
Nu = 

k(Tw-TJ -2(aRt)A6-\a) (37) 

3 Results and Discussion 
Derived in the preceding section are two sets of similarity 

equations each for the variable wall temperature and variable 
wall heat flux cases. As was stated earlier, to facilitate 
numerical computation, the alternate sets are employed for in
termediate and large X (or a) and the other sets for small and 
intermediate X (or a). It has been verified that the two sets 
yield the same results. Some representative results are 
presented as follows. 

Variable Wall Heat Flux Cases. Figures 1 and 2 show, 
respectively, the dimensionless axial velocity profiles and 
dimensionless temperature distributions for an accelerating 
flow (m = 1.0) past a vertical slender cylinder with a linear sur
face heat flux variation (p=1.0) along the axis. The mixed 
convection parameter a is a measure of the relative importance 
of the free convection and forced convection contributions for 
the case of variable wall heat-flux bodies. It may be observed 
from Fig. 1 that the overshoot, due to buoyancy effect, of the 
axial velocity beyond its free-stream value depends upon not 
only a but also Pr and the body size parameter a. When cr= 10, 
the overshoot (approximately 7 percent) takes place for the 
case of Pr = 0.733 and a = 0.1, but not for the other two cases 
for P r= 10 with a = 0.1 and Pr = 0.733 with a = 0.01. The ef
fects of body size are such that the more slender the body, the 
thinner the velocity and thermal boundary layers; and it also 
plays a role in the control of velocity overshoot. It is in
teresting to note that in the case of a two-dimensional body or 
an axisymmetric body where the radius of its transverse cur-
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vature is much greater than the boundary-layer thickness, the 
velocity overshoot is controlled only by a and Pr. 

The effects of a on skin friction and heat transfer are il
lustrated in Fig. 3, which shows a typical trend that is common 
to all of the parameters studied herein. As cr—oo the results 
tend to the asymptotes for pure free convection as shown in 
the figure. Thus, in the situation of aiding mixed convection 
considered here, both the skin-friction coefficient and Nusselt 
number are higher than they would be in either of the cor
responding component flows alone. 

Variable Wall Temperature Cases. The buoyancy effects 
on skin friction and heat transfer are shown in Fig. 4 for an ac
celerating flow (AM = 0.6) past a needle-shaped body, of which 
the surface is prescribed by R = {av/ux)

U2xxl% and subject to a 
temperature distribution with 5 = 0.2. Examination of the 
results reveals that the effects of Pr, a, and X on the flow and 
heat transfer are qualitatively similar to those in the case of 
variable wall heat flux. However, it is noted that quantitative
ly the two cases require separate attention, unlike the free-
convection cases where the results for a uniform heat flux flat 
plate (or cylinder) can be closely correlated with those for a 
uniform wall temperature plate (or cylinder) [10, 11]. 
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Introduction 
In industrial processes such as the extrusion of metals and 

plastics, the cooling and/or drying of paper and textiles, and 
material handling operations, heat transfer is frequently en
countered in boundary layers adjacent to continuous sheets 
moving in an otherwise quiescent medium. The buoyancy 
forces arising from the heating or cooling of these sheets 
modify the flow and thermal fields and thereby the heat 
transfer characteristics of the process. Such boundary layer 
problems have been analyzed by several investigators. For ex
ample, combined forced and free convection adjacent to con
tinuous, moving sheets has been studied numerically by Chen 
and Strobel (1980) for horizontal geometry and by Strobel and 
Chen (1980) for inclined geometry. These two studies also in
cluded mass diffusion effects in boundary layers. The aim of 
the present investigation is to develop useful correlations for 
the local and average Nusselt numbers in laminar boundary 
layers along a horizontal, continuous sheet moving in an 
otherwise quiescent environment. Such correlations have not 
been presented in the past. The available results have been ex
tended to cover higher buoyancy parameter values and a wider 
range of Prandtl numbers. Both the uniform wall temperature 
(UWT) and the uniform surface heat flux (UHF) cases are ex
amined in this study. 
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velocity overshoot is controlled only by a and Pr. 
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temperature distribution with 5 = 0.2. Examination of the 
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heat transfer are qualitatively similar to those in the case of 
variable wall heat flux. However, it is noted that quantitative
ly the two cases require separate attention, unlike the free-
convection cases where the results for a uniform heat flux flat 
plate (or cylinder) can be closely correlated with those for a 
uniform wall temperature plate (or cylinder) [10, 11]. 

References 
1 Narain, J. P., and Uberoi, M. S., "Forced Heat Transfer Over Thin 

Needles," ASME JOURNAL OF HEAT TRANSFER, Vol. 94, 1972, pp. 240-242. 
2 Chen, J. L. S., and Smith, T. M., "Forced Convection Heat Transfer 

From Non-isothermal Thin Needles," ASME JOURNAL OF HEAT TRANSFER, Vol. 
100, 1978, pp. 358-362. 

3 Van Dyke, M., "Free Convection From a Vertical Needle," in: Problems 
of Hydrodynamics and Continuum Mechanics, I. E. Block, ed., 1970, pp. 
748-761. 

4 Narain, J. P., and Uberoi, M. S., "Laminar Free-Convection From Thin 
Vertical Needles," Physics of Fluids, Vol. 15, 1972, pp. 928-929. 

5 Chen, J. L. S., "Natural Convection From Needles With Variable Wall 
Temperature," ASME Paper No. 80-HT-72, 1980. 

6 Chen, J. L. S., "Natural Convection From Needles With Variable Wall 
Heat Flux," ASME JOURNAL OF HEAT TRANSFER, Vol. 105, 1983, pp. 403-406. 

7 Narain, J. P., and Uberoi, M. S., "Combined Forced and Free-
Convection Heat Transfer From Thin Needles in a Uniform Stream," Physics 
of Fluids, Vol. 15, 1972, pp. 1879-1882. 

8 Narain, J. P., and Uberoi, M. S., "Combined Forced and Free-
Convection Over Thin Needles," Int. Journal of Heat and Mass Transfer, Vol. 
16, 1973, pp. 1505-1511. 

9 Sparrow, E. M., Eichhorn, R., and Gregg, J. L., "Combined Forced and 
Free Convection in a Boundary Flow," Physics of Fluids, Vol. 2, 1959, pp. 
319-328. 

10 Sparrow, E. M., and Gregg, J. L., "Laminar Free Convection From a 
Vertical Plate With Uniform Surface Heat Flux," Trans. ASME, Vol. 78, 1956, 
pp. 435-440. 

11 Nagendra, H. R., Tirunarayanan, M. A., and Ramachandran, A., 
"Laminar Free Convection From Vertical Cylinders With Uniform Heat Flux," 
ASME JOURNAL OF HEAT TRANSFER, Vol. 92, 1970, pp. 191-194. 

Correlations for Laminar Mixed Convection in 
Boundary Layers Adjacent to Horizontal, Continuous 
Moving Sheets 

N. Ramachandran,1-4 T. S. Chen,24 and B. F. Armaly34 

Introduction 
In industrial processes such as the extrusion of metals and 

plastics, the cooling and/or drying of paper and textiles, and 
material handling operations, heat transfer is frequently en
countered in boundary layers adjacent to continuous sheets 
moving in an otherwise quiescent medium. The buoyancy 
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problems have been analyzed by several investigators. For ex
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and Strobel (1980) for horizontal geometry and by Strobel and 
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cluded mass diffusion effects in boundary layers. The aim of 
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Fig. 1 A comparison between the predicted and correlated local 
Nusselt numbers for the UWT and UHF cases 

Analysis 
The boundary layer along a semi-infinite continuous sheet, 

issuing from a slot and moving in an otherwise quiescent 
medium, develops from the opening of the slot along the 
direction of motion as depicted schematically in the inset of 
Fig. 1. The heat transfer in such a boundary layer flow is 
physically different from that for the classical forced convec
tion along a stationary semi-infinite flat plate. The heat 
transfer rate from the moving sheet is higher than that from a 
stationary flat plate due to the higher transfer rate in the 
vicinity of the moving wall. 

The boundary layer equations for a horizontal, continuous 
moving sheet which is either heated isothermally (UWT) or 
maintained at a constant surface heat flux (UHF) are the same 
as those stated by Chen et al. (1977) and are hence not 
repeated here. However, the following modifications in the 
boundary conditions from the aforementioned study have to 
be incorporated. For the flow field, u = w0 at y = 0 (where u0 is 
the velocity of the moving sheet) and «—0 as y—oo, and for 
the thermal field under the UHF condition qw = - kdT/dy = 
const at y = 0. The governing equations and boundary condi

tions are transformed from the (x, y) primitive variables to the 
(£, t\) or (![, TJ) coordinate system for the UWT or UHF case. 
In this note, the transformed equations and boundary condi
tions are listed for completeness and the correlation equations 
for the local and average Nusselt numbers are presented, 
respectively, for the UWT and UHF cases. 

Uniform Wall Temperature (UWT) Case. The transformed 
equations and boundary conditions for mixed convection 
along a horizontal continuous, moving sheet are (Chen and 
Strobel, 1980) 

/'" + \ff" ± 
r r°° c°° 36 

1 

F^r 
)" + 

! ( / • 

-fd' = 

ML 
9? 

1 

~2~ 

- / " 

iif 

p» de 

h di 

9? / 

de df 

(1) 

) (2) 
2 -- 2 ' V 9? d£ 

/ ( * , 0 ) = 0, / ' ( £ , 0 ) = 1, 0 ( f ,O )= l 

/ ' ( € , °°) = 0, 0(£,°°) = O (3) 
where the primes denote partial differentiation with respect to 

i)=y(ua/vx)V2, and the plus and minus signs in front of the 
third term on the left-hand side of equation (1) are, respective
ly, for buoyancy-assisting and opposing conditions. The 
buoyancy parameter £(x), the reduced stream function / ( £ , 
rj), and the dimensionless temperature 0(£, 17) are given, 
respectively, by 

£ « = G r x / R e J / 2 , / ( £ , , ) = * ( * , y)/{vuoXy<\ 

Hk,n) = (T-T„)/{Tv-TQ.) (4) 

where \p is the stream function and the local Grashof and 
Reynolds numbers are defined in the usual manner as Gr̂ . = 
gP(T„ - T«,)x2/v2 and Rex = u0x/v. The local Nusselt 
number Nux = hx/k has the expression 

Nu x Re x ~ 1 / 2 =-0 ' (£ ,O) 

and the average Nusselt number Nu = hL/k is given by 

NuRer1 / 2 = 2 ^ - ' j o
l L [-f l ' (£,0)]df 

(5) 

(6) 

where £L is the buoyancy parameter based on a certain 
characteristic length L. 

Correlation equations for the local Nusselt number in mixed 
convection are developed along the same line as proposed by 
Churchill (1977). Thus, the mixed convection local Nusselt 
number Nux can be written as a combination of the local 
Nusselt numbers, NuF for pure forced convection and Nuw 

for pure free convection, in the form 

Nu"=Nu£±Nu5, (7) 

In this equation n is a constant and the plus and minus signs 
pertain to buoyancy-assisting and opposing conditions, 
respectively. Equation (7) can be written in the form 

Y" = 1 ±X" (8) 

where 

Y=Nuxm\xF, X- = NuA,/Nuf (9) 

Equations (8) and (9) also apply to the average Nusselt number 
Nu if the local quantities Nux, NuF, and Nuw are replaced 
with the corresponding average quantities Nu, Nu^, and NuN, 
respectively. 

The local Nusselt number results from the present calcula
tions for pure forced convection in laminar boundary layer ad
jacent to an isothermal, continuous moving sheet can be cor
related by the equation 

where 

NuF = JF1(Pr)Re| 

F,(Pr)= 1.8865 Pr13/32 - 1.4447 Pr1 

(10) 

(11) 

which is accurate to within 5 percent for 0.1 < Pr < 100. 
From the analysis of Chen et al. (1986) the corresponding ex
pression for free convection along an upward-facing heated, 
horizontal flat plate maintained at a uniform wall temperature 
is given by 

where 

NuN=F2(Pr)(Grx)» 

F2(Pr) = (Pr/5)1/5Pr1/2[0.25+ 1.6 Pr l / 2] 

(12) 

(13) 

The pure free convection limit for this problem, it is noted, 
corresponds to the case when both the semi-infinite sheet and 
the ambient fluid are at rest simultaneously and hence there is 
no externally forced flow. Physically, this implies that the 
velocity (of the sheet) u0 becomes so small that it is insignifi
cant in comparison to large thermal buoyancy forces. As in 
the case of a stationary horizontal flat plate, the free convec
tion boundary layer will exist for a short length before a 
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buoyant plume is formed downstream. The local mixed con
vection Nusselt number for a horizontal, isothermal, con
tinuous moving sheet can then be expressed according to equa
tion (8) as 

Nu^Re " 1 / 2 /F , (Pr) = [ 1 ± [^(PrXGr^/Re^2)175/^, (Pr)]" ) u" 

(14) 

Similarly, the corresponding average mixed convection 
Nusselt number can be correlated as 

NuRer1 /2/2F!(Pr) 

= {1 ± [5F2(Pr)(GrL/Re£ /2)1/5/6F,(Pr)]" ) w" (15) 

Equations (14) and (15) have the form Y = (1 ± X")l/n. As 
will be seen later when results are presented, n = 3 provides a 
good correlation. 

Uniform Surface Heat Flux (UHF) Case. The transformed 
equations and boundary conditions for mixed convection in 
laminar boundary layer along a horizontal, continuous mov
ing sheet subjected to a uniform surface heat flux are given by 
(Mucoglu and Chen, 1978) 

, , 1 1 r f" f™ dd> ~\ 

1 1 1 / d4> df, \ 

w*'+^*'-—**=*•(*-*r*'ir) (17) 

/ i t t i . 0 ) = 0, /, '(£,, 0 ) = l , 0 ' ( f „ O ) = - l (18) 

/ i « i , « > ) = 0, 0 ( $ , , o o ) = O 

where the primes again denote partial differentiation with 
respect to»/. The reduced stream function / , (£ j , r;), the dimen-
sionless temperature1 0 ( ^ , ?j), and the buoyancy parameter 
£i (x) for this case are defined as 

/ , ( £ „ r,)=t(x,y)/(m0x)W2, 

*(£i , r,) = (T-Ta,)Rel
x'

2/(qwx/k), (19) 

^(x)=Gv*/Rcl 

where Gr* = gfiq^/kv2 is the modified local Grashof 
number. The expressions for the local and average Nusselt 
numbers are, respectively, 

Nu,Re-1 / 2 = l / * ( { „ 0 ) (20) 

and 

N u R e ^ 2 ^ " 2 ^ [ l / * ( « , , 0 ) ] € r 1 / 2 ^ i (21) 

where £1L is ^ based on a certain characteristic length L. 
Correlations for the UHF case can be expressed in the same 

form as that of equations (7)-(9). For laminar forced convec
tion adjacent to a moving sheet under the UHF case, the local 
Nusselt number results from the present calculations can be 
correlated by the equation 

NuF = G!(Pr)Rey2 (22) 

where 

G,(Pr) = 2.8452 Pr1 3 / 3 2-2.0947 Pr1/3 (23) 

which has an error of less than 4 percent for 0.1 < Pr < 100. 
The corresponding free convection case is given by the follow
ing correlation from the analysis of Armaly et al. (1987) 

NuN = G2(Pr)(Gr,*)I/6 (24) 

where 

G2(Pr) = (Pr/6)1/6Pr1/2[0.12+1.2 Pr1/2]-» (25) 

The local and average mixed convection Nusselt number for 
the horizontal moving sheets can then be written according to 
equation (8) as follows: 

NuxRe~W2/G{(Pr) = [ 1 ± [G2(Pr)(Gr;/Re3)1/6/G,(Pr)]n ) w" 

(26) 

and 

NuRei , / 2 /2G,(Pr) 

= (1 ± [3G2(Pr)(Grl/Rei)1/6/4G1(Pr)]" }u" (27) 

Again, equations (26) and (27) have the form Y = (1 ± 
X")w". As will be seen later, « = 3 also provides a good cor
relation for the UHF case. 

It is noted that alternate correlation equations for both the 
UWT and UHF cases for free convection from a horizontal 
flat plate have been presented by Churchill (1983). They may 
also be used in correlating the mixed convection Nusselt 
number in place of equations (12), (13) and (24), (25). 

Results and Discussion 
The correlation equations (14) and (26) along with the 

calculated results for Prandtl numbers of 0.7, 7, and 100 are 
presented in the Y versus X form for both the buoyancy-
assisting and opposing conditions, respectively, in Fig. 1 for 
the UWT and UHF cases. Computations were extended to 
higher values of the buoyancy parameter than the work of 
Chen and Strobel (1980) and to cover an additional Prandtl 
number of 100 for the UWT case. New results were generated 
for both the buoyancy-assisting and opposing conditions for 
the UHF case. As is evident from the figure, an exponent 
value of n = 3 correlates rather well (with errors of less than 10 
percent) for both the heating conditions and for both the 
buoyancy-assisting and opposing situations. The average 
Nusselt numbers as calculated by equations (6) and (21) for the 
UWT and UHF cases, respectively, were then correlated with 
the respective equations (15) and (27), and good agreement 
was found to exist between the calculated and the correlated 
results. Thus a separate figure for the average Nusselt number 
correlations is not presented. Instead, Fig. 1 may be utilized 
for this purpose provided the Y and X coordinates in these 
figures (for the appropriate heating condition) are represented 
by those given in equations (15) and (27). 

Better correlation equations for Pr = 0.7 under the 
buoyancy-assisting case are shown by dashed lines in Fig. 1 for 
both the UWT and UHF cases. They have the form Y" = 1 + 
aX" in which a=1.2 for the UWT case and tf=1.5 for the 
UHF case, with « = 3. 

It must be pointed out that the correlation equations 
presented in this note were based on the results from the 
numerical solution of the governing laminar boundary layer 
equations. As such they do not account for effects that may be 
caused, for example, by buoyancy-induced instability and 
transition or plume-like behaviors downstream due to strong 
buoyancy forces. Thus, these correlation equations should be 
used with caution, pending experimental determination of the 
validity regime. It may be suggested, however, that they 
perhaps should be restricted in their applications to X< 1. 

Conclusion 
Simple and accurate correlation equations have been 

developed and presented for estimating the local and average 
Nusselt numbers in mixed convection adjacent to horizontal, 
continuous moving sheets whose surface is maintained either 
at a constant temperature or at a constant heat flux. The cor
relations presented for a Prandtl number range of 0.7 < Pr < 
100 and for both buoyancy-assisting and opposing conditions 
agree very well with the analytically predicted values. 
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Boundary Effects in Laminar Mixed Convection Flow 
Through an Annular Porous Medium 
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Nomenclature 
cl > c2> c 3> c 4 = 

d = 
Da = 
Gr = 

H = 

K = 
k = 
I = 

Nu = 
P = 

Re = 
Q = 

Q = 
r = 

R = 
S = 
T = 
u = 

" m = 

Z = 
a = 

constants in equation (6) 
diameter 
Darcy number = K/P 
Grashof number = 
g(3P (qrt + qM/M 
parameter defined before 
equation (5) 
permeability of the medium 
fluid thermal conductivity 
hydraulic radius = r„ — r, 
Nusselt number 
pressure 
Reynolds number = uml/v 
surface heat flux rate 
heat flux ratio = q;/q0 

dimensionless radial 
coordinate 
radius ratio = r0/r( 

dimensionless pressure loss 
dimensionless temperature 
dimensionless volume-
averaged axial velocity 
bulk mean velocity 
axial coordinate 
parameter defined before 
equation (5) 
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/3 = fluid coefficient of volume 
expansion 

71,72 = parameters defined after 
equation (6) 

e = porosity of the medium 
v = kinematic viscosity 

Pm = bulk fluid density 

Subscripts 

/ = inner surface 
m = mixed Darcy flow regime 

(for Nusselt number) 
o = outer surface 

Introduction 
The influence of the Brinkman and Forchheimer terms in 

forced convection over a flat plate has been investigated by 
Vafai and Tien (1981). A similar study was reported by 
Ranganathan and Viskanta (1984) discussing the wall and in
ertia effects in mixed-convection flow over a flat plate. Tong 
and Subramanian (1985) have reported a study of the wall ef
fect on natural convection in a vertical enclosure. Their results 
indicate that the viscous term should be considered when the 
Darcy number is greater than 10~5. Similar results are ob
tained by Lauriat and Prasad (1986) in natural convection in a 
vertical porous cavity. They also found that the wall effect is 
negligible for Darcy number below 10"5 . 

This study addresses the Brinkman-extended Darcy model 
(Brinkman flow) of a laminar mixed-convection flow in an an
nular porous region. The primary objective of the present 
study is to help clarify the conditions under which the 
Brinkman term can be neglected in this flow without produc
ing an unacceptable error. The simple geometry considered 
and the closed-form nature of the solution are advantageous 
in the demonstration of the importance of the wall effect. The 
results of this study can also be used in the evaluation of the 
accuracy of the numerical computations in more complex non-
Darcian annular flows in the limiting case of the fully 
developed flow. 

Analysis 
The geometry of the problem under consideration is shown 

in Fig. 1. A vertically oriented annulus region is filled with a 
fluid-saturated porous medium. An upward (opposite to the 
gravity vector) forced flow is combined with mixed convection 
which is present due to uniform heat flux at the boundaries. 
The heat flux rates at the inner and outer walls are qt and q0, 
respectively. The thermal and velocity fields are assumed fully 
developed. 

Assuming an isotropic, homogeneous porous medium and 

Fig. 1 Geometry of the problem 
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incompressible, constant-property laminar flow, and invoking 
Boussinesq approximation, the governing conservation laws in 
nondimensional form are (Parang and Keyhani, 1986) 

(? ) ( * - ! ) 
/ GrDa\ 1 

-\)2D2u-u + — - — ) T=S (1) 
V Re 

D2T=u 

) R2 

(2) 
In these equations Da, Gr, Re, and R are Darcy number, 
Grashof number, Reynolds number, and radius ratio, respec
tively. The differential operator D2 and nondimensional 
pressure term S are defined, respectively, as 

1 d ( d \ / 1 dp \ I 

r dr \ dr' \pm dz ' uf„ 

The nondimensional constant-heat flux boundary conditions 
are 
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where Q = qj/q0 is the ratio of heat fluxes at the walls. 
Equations (1) and (2) show the characteristic dimensionless 

parameters of the problem. The wall effect is manifested 
through the parameter Da/e. The inclusion of this term results 
in Brinkman modification of the Darcy flow model. The 
relative importance of the buoyancy (mixed convection) effect 
is represented by the dimensionless flow parameter GrDa/Re. 
A more algebraically convenient form of presenting these two 
effects is obtained if we define the following parameters 

GrDa 1 „ e 
H*=-

Re R2-1 Da(i? - 1 ) 2 

The set of equations (1) and (2), with the boundary condi
tions (3) and (4), was solved for velocity and temperature pro
files in terms of the modified Bessel functions I0 and K0. They 
are 

u = cj0 (Y,/-) + c2K0 ( 7 l r ) + c3I0 {y2r) + c4K0 (y2r) (5) 
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Fig. 2 Velocity (a) and temperature (b) profiles for Brinkman flow with 
R = 10, Q = 2, GrDa/Re = 10; : Da/f = 10~ 2 , : Da/e = 1 0 " 6 

Table 1 Variation of normalized Nusselt number at the inner 
and outer walls with radius ratio and Da/e with Q = 2 and 
GrDa/Re = 10 

Da/e 

2 

Nu,/Nu /m 

R 

5 10 2 

Nu0/NuD„, 

R 

5 10 

10"6 

10"4 

10- 2 

0.997 
0.973 
0.831 

0.997 
0.972 
0.843 

0.997 
0.973 
0.880 

0.990 
0.910 
0.574 

0.993 
0.934 
0.637 

0.993 
0.935 
0.637 

a, =-
-7f /a

2 

H2 

\-y\/oi2 

H2 

The special form of the velocity and temperature solutions for 
various limiting cases of the above two effects are omitted here 
for brevity of space (see Parang and Keyhani, 1986). The con
stants C[, c2, c3, and c4 are algebraically involved and are not 
presented here. 

The Nusselt numbers at the inner and outer walls are 

Nu,= 
(R - l)2(R + 1) 

Nu„ 
(R-l)2(R + l) 

2T,(1+R/Q) ° 2T0(R + Q) 

where T-, and T0 are temperatures at the inner and outer 
boundaries, respectively. 

Typical velocity and temperature profiles, the Nusselt 
number results, the effect of mixed convection, and the 
boundary effect are presented and discussed briefly in the 
following section. A more detailed discussion can be found in 
Parang and Keyhani (1986). 

Results and Discussion 
The velocity and temperature profiles with Q = 2, i?=10, 

and GrDa/Re = 10 are presented in Figs. 2(a) and 2(b) for the 
two values Da/e = 10_2 and 10~6. As expected the velocity 
gradient at the wall is substantially higher at the smaller Da/e 
value. For a given GrDa/Re, it is observed (Parang and 
Keyhani, 1986) that for Da/e= 10~6 the velocity profile is in
distinguishable from that of the mixed convection Darcy flow 
(Da/e = 0), and the region where velocity drops to zero is so 
thin that it cannot be shown in the figure. The relatively lower 
velocity at the wall for large Da/e results in higher temperature 
at the wall as shown in Fig. 2(b). This effect is more pro
nounced at the outer wall. 

The results for Nusselt number are normalized with respect 
to mixed convection Darcy flow (Da/e = 0) Nusselt number 
(i.e., Nu,-„, and Nu0,„ for inner and outer walls, respectively) 
and are presented in Table 1 for Q = 2, GrDa/Re =10, and 
various values of Da/e and i?. It is obvious that in this case the 
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Fig. 3 Comparison of wall effect on heat transfer coefficient with 
R = 2; : GrDa/Re = 10; : GrDa/Re = 1.0, for the outer wall (Q = 0) 
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Fig. 4 Comparison of the Nusselt number for Brinkman (Nu) and Darcy 
(Num) flow regimes as a function of Da/e for R = 5 

inclusion of the Brinkman term has no appreciable effect on 
heat transfer coefficient at Da/e= 10~6 (less than 1 percent). 
Furthermore, an increase of two orders of magnitude in Da/e 
shows less than 9 percent change in the Nusselt number. 
However, the boundary effect becomes significant at higher 
values of Da/e. For example for Da/e = 10"2 the exclusion of 
the Brinkman term can result in more than 70 percent error in 
the Nusselt number. For a given radius ratio the heat transfer 
coefficient decreases with increase in Da/e on both walls. It is 
also observed that for a given Da/e, Nusselt number improves 
with increase in radius ratio R. 

The buoyancy effect on heat transfer coefficient in the 
Brinkman flow is similar to the Darcy flow regime discussed in 
Parang and Keyhani (1986). For example, with R = 10, Q = 2, 
and GrDa/Re = 10, the outer wall Nusselt number improves 
relative to the forced Brinkman flow (GrDa/Re = 0) results by 
44, 40, and 22 percent for Da/e = 10~6, lO"4, and 10"2, 
respectively. 

The velocity and temperature profiles with R = 2 and 
GrDa/Re =10 for the fundamental solutions (i.e., Q = 0, 
Q=°°) have characteristics similar to those presented in Figs. 
2(a) and 2(b) except with a more pronounced skew of the flow 
velocity near the heated wall (Parang and Keyhani, 1986). The 
Nusselt number (normalized as before by Nu,„, and Nuom) for 
these fundamental solutions are similar to those discussed in 
Table 1. The wall effect is observed to have a significant im
pact on the heat transfer coefficient at the outer wall and is in
creasingly more important at higher radius ratios. However 

the impact of boundary effect on the inner wall remains 
relatively small at even high values of Da/e. 

The boundary effect is observed to be more important with 
increase in the flow parameter GrDa/Re. This phenomenon is 
illustrated in Fig. 3 where the normalized Nusselt number of 
one of the fundamental solutions (Q = 0) is shown for 
GrDa/Re =1 and 10. Furthermore, the effect of the mixed 
convection on the heat transfer coefficient becomes increas
ingly more important with higher Da/e due to the interaction 
of buoyancy and wall effect. The error in the Nusselt number 
due to the omission of the Brinkman term as a function of 
Da/e for various values of the flow parameter and typical 
values of the radius ratio are presented in Fig. 4. 

Conclusion 
Several important conclusions can be drawn from the 

discussion in the previous section. The present results, along 
with those of Lauriat and Prasad (1986) and Tong and 
Subramanian (1985), indicate that the Brinkman term may be 
neglected without an appreciable loss of accuracy for 
Da/e< 10~5. Since the other two studies are for natural con
vection in vertical enclosures with boundary conditions dif
ferent from the present study, this limit on the importance of 
wall effect seems to be applicable to problems with different 
geometry and thermal boundary conditions. Moreover, for 
moderate values of the relevant flow parameters, the present 
conclusion may be applicable to forced, mixed, and natural 
convection flow regimes. Finally, it is also found that the wall 
effect is more pronounced at the outer wall in annular porous 
flows. That is, for a given GrDa/Re and radius ratio the exclu
sion of the Brinkman term will result in a higher error in the 
heat transfer coefficient of the outer cylinder relative to that 
of the inner cylinder. 
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Nomenclature 

/ = 

/ = 

k = 
K = 

dimensionless stream function 
acceleration due to gravity 
function associated with a deviation 
from unity 
thermal conductivity 
permeability 
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Nu, 
Pe, 
Qw 

r 
r* 

Ra, 
T 

u, v 
x,y 

a 
P 
V 
6 
X 

V 

H 

4> 
* 

Subsc 
e 
w 

= local Nusselt number 
= local Peclet number 
= local surface heat flux 
= function representing wall geometry 
= 1 for plane flow and r for axisym-

metric flow 
= local Rayleigh number 
= temperature 
= Darcian velocity components 
= boundary layer coordinates 
= thermal diffusivity 
= coefficient of thermal expansion 
= similarity variable 
= dimensionless temperature 
= exponent associated with wall 

temperature distribution 
= kinematic viscosity 
= transformed variable in the stream-

wise direction 
= circumferential angle 
= dimensionless stream function 

ripts 
= boundary layer edge 
= wall 

Introduction 

Convective heat transfer within a fluid-saturated porous 
medium is of great interest, especially in the petroleum and 
geothermal industries. Considerable attention has been 
directed toward understanding the transport properties of 
porous media subjected to free, forced, or mixed convection. 

Analytical studies of free convection based on the boundary 
layer concept were reported on a vertical plate (Avduyevskiy 
et al., 1976; Cheng and Minkowycz, 1977), and a horizontal 
circular cylinder and sphere (Nilson, 1981). Merkin (1979) 
proposed a similarity transformation which can deal with 
isothermal two-dimensional and axisymmetric bodies of ar
bitrary shape. Fand et al. (1986) applied Merkin's analysis to 
the specific case of free convection around a horizontal 
isothermal circular cylinder. The transformation suggested by 
Merkin has recently been extended to the general case of 
nonisothermal bodies of arbitrary shape by the authors 
(Nakayama and Koyama, 1986). The problem of combined 
free and forced convection (mixed convection) in a porous 
medium also has many important applications such as in 
geothermal reservoirs where a pressure gradient exists due to 
withdrawal or reinjection of fluids. Cheng (1977) studied 
mixed convection on a flat plate, and obtained similarity solu
tions for the special case where the free-stream velocity and 
wall temperature distributions of an inclined plate (a wedge) 
vary according to the same power function of distance. Subse
quently, Cheng (1982) found similarity solutions for mixed 
convection over an isothermal horizontal cylinder and sphere. 
So far, only simple geometries were treated in combined 
convection. 

It is the purpose of the present paper to introduce a general 
transformation procedure appropriate to the problem of com
bined free and forced convection in a porous medium. It will 
be shown that particular transformations proposed in the 
previous papers by Cheng (1982) and Minkowycz and co
workers (1985) are simply the specific forms of the present 
general transformation. Pure forced convection will be treated 
first as a limiting case of combined free and forced convec
tion. The analysis reveals that any two-dimensional or axisym
metric body of arbitrary shape possesses its corresponding 
class of wall temperature distributions which permit similarity 
solutions. Secondly, combined free and forced convection will 

Fig. 1 Physical model and coordinate system 

be considered to seek similarity solutions. It is found that, 
unlike in pure forced convection, similarity solutions in mixed 
convection are possible only when the external free-stream 
velocity varies everywhere in proportion to the product of the 
streamwise component of the gravity force and the wall-am
bient temperature difference. 

Governing Equations 

Figure 1 shows the physical model and its boundary layer 
coordinates (x, y). The geometry and surface wall temperature 
of the heated body in a porous medium are specified by the 
functions r(x) and Tw(x), respectively. The wall temperature 
Tw (x) is assumed to be everywhere higher than the ambient 
temperature of a porous medium Te. The boundary layer edge 
velocity ue (x) may be obtained from the potential flow theory 
once the geometric configuration is known. In common with 
prior boundary layer studies of this kind, we limit our analysis 
to cases where a boundary layer structure exists in the system. 

Under the usual boundary layer approximations along with 
the Boussinesq approximation, the governing equations, 
namely, the equation of continuity, Darcy's law,2 and the 
energy equation are given by 

(1) 

and 

where 

and 

u 

dx 

du 

dy 

dT 
—^—+v 

u + -

K$ 
V 

dT 

3 

8x 

= CK 

r*V = 0 

dT 

dy 

d2T 

dx dy dy2 

plane flow 

r(x) axisymmetric flow 

rfr\2l 1/2 

- ' [ - ( - £ ) ] • 

(2) 

(3) 

(4a) 

(4b) 

In the foregoing equations, u and v are the Darcian velocity 
components in the x and y directions and T is the local 

We assume that the flow is slow or the pores are small enough that the Darcy 
law is valid. 
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temperature. The tangential component of the acceleration 
due to gravity g is indicated by gx, which is related to the local 
surface inclination through equation (4b). Kis the permeabil
ity; v, the kimematic viscosity; a the equivalent thermal dif-
fusivity of the porous medium; and /3, the coefficient of ther
mal expansion. The appropriate boundary conditions for the 
problem are 

y = 0: 

y— oo: 

v = 0, 

T=Tw(x) 

u = ue(x), 

T=T„ 

(5a) 

(5b) 

(5c) 

(5d) 

where the subscripts w and e refer to the wall and boundary 
layer edge, respectively. The continuity equation (1) can 
automatically be satisfied by introducing the stream function 
\p such that 

1 dxP 

v= — 

* dy 

l d^ 

(6a) 

(6b) 
r* dx 

Transformation 

We now introduce the following transformation: 

t = ar*(PeJ)1/2f(x,r,) 

T-Te=ATJ(x.V) 

V= — (Pex/I)
l/2 

where 
AT„(x) = Tw-Te 

P C = ^ 

(la) 

(lb) 

(7c) 

(8fl) 

(8b) 

I(x) = 
\x

0uer*2ATjdx 

uar*2ATl x 
(8c) 

Pex is the local Peclet number and rj is the proposed pseudo-
similarity variable. The function / as defined in equation (8c) 
adjusts the scale in the normal direction according to a given 
body geometry and its surface temperature distribution. Ob
viously, the function / reduces to unity for the special case of 
an isothermal vertical flat plate. Substitution of equations (7) 
into (2)-(6) yields 

f" =(Rax/Pex)6' (9a) 

and 

6" + (Vi -nl)fd'-nlf'd=-xl(d' ~ - / ' — ) (9b) 

with boundary conditions given by 

ij = 0 : 

/ = 0 , (10a) 

0=1 (10b) 

7j — o o ; 

0 = 0 

and the Darcian velocities are 

(10c) 

(lOd) 

u= (a/x)Pexf 

and 

v= (a/x) (Pe„/ / ) l / 2 \(nl- Vi)f-Ix — 
L dx 

/ d In u„r* \ 

(lla) 

where 

n(x)-

Rav 

d In ATW 

d In x 

K(3ATwgxx 

(lib) 

(12a) 

(12b) 

The primes in the foregoing equations denote differentiation 
with respect to ?j. Equation (9a) may readily be integrated with 
equations (10c) and (10eO as 

f' = l+(Rax/Pex)d (13) 

Pure Forced Convection 

Let us consider the limiting case Ra^/Pe^. —• 0, namely, the 
case of pure forced convection. Equation (13) with the bound
ary conditions given by equation (10a), for this case, gives 

The energy conservation equation (9b) reduces to 

dd 
6 " + (Vi - nl) i)d' - nld=xl -

dx 

(14) 

(15) 

It is interesting to note that similarity solutions to equation 
(15) exist when the product nl remains constant in the stream-
wise direction. Similarity solutions for pure forced convection 
around a nonisothermal circular cylinder or sphere were 
reported by Minkowycz et al. (1985). The more general case of 
pure forced convection from nonisothermal curved surfaces of 
arbitrary shape, however, has not been treated yet. Thus, to 
seek such possible similarity solutions, we rewrite the lumped 
parameter nl using a transformed variable £ as 

nJ_dlnATw tiuer*2AT jdx_d In ATW ^ATjd^ 

d In x u„r*2AT2x dint AT\i 

where 

k = \luer*2dx (16b) 

The preceding equation (16a) suggests that the product nl is 
constant provided that the wall temperature varies according 
to 

A r w « { * (17) 

Substitution of equation (17) into (16a) gives a simple relation 
between the lumped parameter nl and te constant exponent X 
as 

X 
nl= 

1+2X 

Hence, equation (15) reduces to 

•i)6'- 1 = 0 

(18) 

(19) 
2(1+2X) ' 1+2X 

Equation (19) appears to be identical to the one derived by 
Cheng (1977) for the specific case of a flat plate (a vertical 
wedge) with its wall temperature varying as ATW <x xx. (Note 
that r) in their work corresponds to rj/ (1 + 2k)ln in our nota
tion.) Thus, numerical values furnished for the case of a flat 
plate are now applicable to all two-dimensional and axisym-
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metric bodies of arbitrary shape, by virtue of equations (166) 
and (17). 

Once the 6 distribution for a given value of X is determined 
by a standard shooting procedure, the local Nusselt number of 
our primary concern may be evaluated from 

N u , = 
AT„k 

-d'(0)(Pex/I)
1 

= - * < ( 0 ) ( l + 2 X ) - ( - ^ - i - P e , ) (20) 

In the above expression, the geometric effect is included in £ 
or (d In £ Id In x) to be precise, which, for example, corre
spond to 

£<xxl+"v A =
 n \ . 

\ 1+nJ' 
a vertical wedge pointing downward 

\ 3 + nJ' 
a vertical cone pointing downward 

£ocl - cos 0: 

a horizontal circular cylinder 

£<x cos3 0 — 3 cos <t> + 2: 

a sphere 

and 

'1 + nv: a vertical wedge 

3 + n,,: a vertical cone 

dlni, 

d In x 

(21a) 

(,21b) 

(21c) 

(21d) 

(22a) 

(22b) 

4> sin 0 

1 - cos 

30 sin3 0 

: a horizontal circular cylinder (22c) 

: a sphere (22d) 
cos3 0 — 3 cos 0 + 2 

where the potential flows are assumed for ue (x), namely, 

ue ocx"v: a wedge or a cone (23a) 

and 

ue <x sin 0: a cylinder or a sphere (23 6) 

Equation (20) along with (22) reveals that the surface wall heat 
flux over a wedge or cone varies according to qw<xx°-n+"v~iV2, 
while the circumferential variation of q„ on a horizontal cir
cular cylinder of a sphere with a radius Lr is given by 

/ 2 \ 1 /2"x 

g*=-0 ' (O)( l+2X) 1 / 2 ( s in0: 
V 1 - cos 0 / 

a horizontal cylinder 

and 

9 

(24a) 

/ 9 \ 
q*=-d'(0)(l + 2\y/2(—-) 

( • TT) cos3 0 - 3 cos 0 

where 

sin20: a sphere 

g , ^ _ 
qwLr j(u„Lr 

( ^ ) 

(246) 

(24c) 
AT„rkl 

u„, is the approaching free-stream velocity and ATwr is the 
wall-ambient temperature difference at the rear stagnation 

f 
^ i 

£x 

JJJJX 

sp 

> 

1.2 

1,0 

0.8 

0.6 

Q,H 

0,2 

-

-

1 

Forced Convection 

1 1 l 1 
0 0,2 0,1 0,6 0,8 1,0 

X 
Fig. 2 Heat transfer results on pure forced convection 

point. Both equations (24a) and (246) suggest that, for a 
positive exponent X, qw increases away from the front stagna
tion point as a result of an increase in ATW, attains a max
imum, then decreases towards the rear stagnation point as the 
boundary layer grows thick. 

The foregoing results on pure forced convection heat 
transfer are plotted in Fig. 2 in terms of the grouping Nux/ 
((d In %/d In x)Pex)

ln for universal use. 

Combined Free and Forced Convection 

For the general case of combined free and forced convec
tion, we substitute equation (13) into (96) to eliminate 6. After 
some manipulation, we have 

/ ' " + (Vz -nl)ff" -nl(f' - \)f =xl(f 4—f" 
\ dx dx 

d 

~dx 
- / ' ( / " - 1 ) ^ 7 In (Ra. /Pe , ) ) (25) 

with the boundary conditions given by 

r, = 0 : / = 0 , / ' = l + (Ra x /PeJ (26a) 

v-~oo-.f' = l (266) 

Equation (25) indicates that similarity solutions exist when 

Rav/Pevoc- = const. 

and 

r dlnATw \luer*2AT\dx 
n->=—T~, ^—7^, = const. 

d ln x uer*2AT \x 

or by combining equation (27a) with (276), 

dlnATw \§gxr*2ATldx d In ATW ^ATldt, 

(21a) 

(276) 

nl=-
dlnx gxr*2ATlx d In £ ATU 

(27c) 

where the transformed variable £, for this time, should be 
defined as 

i = \lgxr*2dx (28) 

Thus, similarity solutions exist when the boundary layer edge 
velocity ue (x) varies everywhere in proportion to the product 
gxATw, and at the same time, ATW varies in accord with a 
power function of the new variable £ 

ATW^ 

which yields a simple relation, namely, 

(29) 
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nl= 
1 + 3X 

and equation (25) reduces to 

1 + X „„.. X 
/'"+- - / / " 

1+3X 
f'if'- D = 0 

(30) 

(31) 
2(1 + 3X) 

The resulting equation is identical to the one reported by 
Cheng (1977) for combined free and forced convection on a 
flat plate assuming ATW <x xx. Therefore, his numerical results 
are readily applicable to the present general case of combined 
free and forced convection. Two kinds of possible situations 
in which the aformentioned requirements for similarity are 
satisfied seem to exist as follows: 

For the case of constant gravitational force, gx = const, the 
proportional relation requires ueocATw. Thus, similarity solu
tions exist for a vertical wedge or cone only when its surface 
wall temperaure ATW varies with the same power index as that 
of the boundary layer edge velocity ue, namely, n = nv. 

On the other hand, for the case of constant wall 
temperature, namely, n = 0, we must have ue <x gx for 
similarity to hold. The case corresponds to an isothermal 
horizontal circular cylinder and an isothermal sphere, since we 
have ue oc gx sin 0 according to the potential theory. 

Upon solving equation (31) with the boundary conditions 
given by equations (26), the local Nusselt number may readily 
be evaluated from 

N u ^ _ ^ ^ ( 1 + 3 X ) - ( - f M - P e , ) 1 / 2 (32) 
(Rax/Pex) v~ ' " " ' W i n x 

where the variable £ defined by equation (28) for combined 
free and forced convection corresponds to 

% <x x(\ = n): a vertical wedge 

£ oc x3 (X = «/3): a vertical cone 

(33«) 

(336) 

£ oc l - cos 0: a horizontal circular cylinder 

£ oc cos3 0 - 3 cos </> + 2: a sphere 

and 

(33c) 

(33rf) 

d\n £ 

d In x 

"1: a vertical wedge 

3: a vertical cone 
0 sin 0 

1 - c o s 

30 sin3 0 

(34«) 

(346) 

: a horizontal circular cylinder (34c) 

cos3 0 - 3 cos 0 + 2 
a sphere (34rf) 

Since ue oc gx for a cylinder or a sphere, the transformed 
variable £ for combined convection on an isothermal cylinder 
or sphere is proportional to that for pure forced convection on 
a cylinder or a sphere (defined by equation (166)). Naturally, 
the circumferential variation of the surface wall heat flux for 
these geometries is similar to that for the case of pure forced 
convection subjected to X = 0. 

For illustrative purposes, the heat transfer grouping 
Nu^/( {d In %/d In x)Pex)

U2 is presented in Fig. 3, where the 
abscissa variable is set to (Rax/Pex) to see its effect on local 
heat transfer rates. 
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nl= 
1 + 3X 

and equation (25) reduces to 

1 + X „„.. X 
/'"+- - / / " 

1+3X 
f'if'- D = 0 

(30) 

(31) 
2(1 + 3X) 

The resulting equation is identical to the one reported by 
Cheng (1977) for combined free and forced convection on a 
flat plate assuming ATW <x xx. Therefore, his numerical results 
are readily applicable to the present general case of combined 
free and forced convection. Two kinds of possible situations 
in which the aformentioned requirements for similarity are 
satisfied seem to exist as follows: 

For the case of constant gravitational force, gx = const, the 
proportional relation requires ueocATw. Thus, similarity solu
tions exist for a vertical wedge or cone only when its surface 
wall temperaure ATW varies with the same power index as that 
of the boundary layer edge velocity ue, namely, n = nv. 

On the other hand, for the case of constant wall 
temperature, namely, n = 0, we must have ue <x gx for 
similarity to hold. The case corresponds to an isothermal 
horizontal circular cylinder and an isothermal sphere, since we 
have ue oc gx sin 0 according to the potential theory. 

Upon solving equation (31) with the boundary conditions 
given by equations (26), the local Nusselt number may readily 
be evaluated from 

N u ^ _ ^ ^ ( 1 + 3 X ) - ( - f M - P e , ) 1 / 2 (32) 
(Rax/Pex) v~ ' " " ' W i n x 

where the variable £ defined by equation (28) for combined 
free and forced convection corresponds to 

% <x x(\ = n): a vertical wedge 

£ oc x3 (X = «/3): a vertical cone 

(33«) 

(336) 

£ oc l - cos 0: a horizontal circular cylinder 

£ oc cos3 0 - 3 cos </> + 2: a sphere 

and 

(33c) 

(33rf) 

d\n £ 

d In x 

"1: a vertical wedge 

3: a vertical cone 
0 sin 0 

1 - c o s 

30 sin3 0 

(34«) 

(346) 

: a horizontal circular cylinder (34c) 

cos3 0 - 3 cos 0 + 2 
a sphere (34rf) 

Since ue oc gx for a cylinder or a sphere, the transformed 
variable £ for combined convection on an isothermal cylinder 
or sphere is proportional to that for pure forced convection on 
a cylinder or a sphere (defined by equation (166)). Naturally, 
the circumferential variation of the surface wall heat flux for 
these geometries is similar to that for the case of pure forced 
convection subjected to X = 0. 

For illustrative purposes, the heat transfer grouping 
Nu^/( {d In %/d In x)Pex)

U2 is presented in Fig. 3, where the 
abscissa variable is set to (Rax/Pex) to see its effect on local 
heat transfer rates. 
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C = C/C3 = nondimensional molar 
concentration of vapor 

C0 = C0/C3 = nondimensional molar 
concentration of frozen bounded 
substance 

E = C3 Mm a2 le/(T3 Kr) = non-
dimensional porosity 

K = effective thermal conductivity 
K2l = K2/K\ = thermal conductivity 

ratio 
/ = latent heat of sublimation 

L = l/(R0 T3) = nondimensional latent 
heat of sublimation 

Lu = cem/a2 = Luikov moisture 
diffusivity 

Lup = ctp/a2 = Luikov filtration 
diffusivity 

P = pressure 
P = P/P3 = nondimensional pressure 
R = C3 R0 T3/P3 = nondimensional 

gas constant 
R0 = universal gas constant 

s(t) = position of sublimation interface 
t = time 

T = temperature 
T0 = initial temperature 
x = space coordinate 

Z(rj) = P(ri) + pC(r)) = transformation 
variable 

a = effective thermal diffusivity 
a,„ = effective moisture diffusivity 
ap = filtration motion diffusion coeffi

cient of vapor 
a2i = oii/a.1 = thermal diffusivity ratio 

P = k - <XP)/K 

A = KP3/[(ap-am)C3] or -P3/(0C3) 
= nondimensional permeability 

e = porosity 
8 = T/T3 = nondimensional 

temperature 
ô = TQ/T3 = nondimensional initial 

temperature 
K = permeability 
X = s(t)/(2^t) = 

nondimensional position of 
sublimation interface 

Subscripts 
1 = frozen region, s(t) < x < oo 
2 = dried region, 0 < x < s(t) 
3 = at triple point of bounded 

substance 
s = at surface, x=0 
v = at interface of sublimation, x = 

s(t) 

Introduction 
Many applications of the vacuum sublimation process for 

freeze-drying products exist. For instance, the food, medical, 
and chemical industries use the sublimation process to main
tain the shape and quality of heat-sensitive products during 
the drying process. The application of the vacuum sublimation 
process has received considerable attention over the past 20 
years. Theoretically, it is assumed that the vapor transfer in 
the dried region is governed by diffusional (Fick) flow and/or 
hydrodynamic (Darcy) flow. Thus vapor movement in porous 
media is due to the concentration and/or pressure gradients. 
Recently Lin (1981, 1982) analyzed the sublimation process in 
a semi-infinite porous medium by considering the transient 
heat equations in both the dried and frozen regions and by 
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assuming the vapor transfer in the dried region to be the result 
of the concentration gradient only. In addition, by relating the 
conditions of the interface to the Clapeyron equation coupled 
with the heat and mass balances at the interface, Lin obtained 
the values of temperature and concentration at the interface 
and the exact solution for the problem. 

Luikov (1966, 1975) formulated the system of equations for 
heat and mass transfer in the capillary-porous media which in
cluded the effect of pressure gradients and the equation of 
pressure field. In the present work, we present a more com
plete description of the vacuum sublimation process for which 
an exact analytical solution is obtained. The present formula
tion is based upon the Luikov system and the fact that the 
vapor flow in the dried region results from both moisture con
centration and pressure gradients in the porous medium. 

Statement of the Problem 
A semi-infinite frozen porous medium is exposed to an en

vironment where the pressure and vapor concentration are 
maintained below the triple point of the bounded substance, 
and the temperature is higher than the initial temperature of 
the porous medium. The porous medium is assumed to be 
composed of very small solid particles of the same size. Also, 
the medium is isotropic, homogeneous, and rigid. Figure 1 
shows a semi-infinite frozen porous medium where the 
temperature and mass content are initially constant 
throughout the medium. At time greater than zero the 
temperature, vapor concentration, and pressure of the surface 
at x= 0 are maintained at constant values and the sublimation 
process begins. Since the vapor is transferred outwardly, the 
dried region and frozen region are formed and are separated 
by a distinct, sharply thin, moving interface defined by x = 
s(t). The temperature, vapor concentration, and pressure at 
the interface are in equilibrium and unknown, but are as
sumed to have constant values which will be determined later. 
There are no moisture concentration or pressure gradients in 
the frozen region. In the dried region vapor concentration 
flows occur as a result of the interactions of temperature, 
vapor concentration, and pressure gradients. 

To formulate the theoretical model of the vacuum sublima
tion problem, additional assumptions are made as follows: 

1 The one-dimensional heat and mass transfer is con
sidered. Both the Darcy and Fick laws for vapor transfer are 
valid through the dried region. 

2 The heat radiation, heat convection, thermal expansion 
of the medium, condensation, Soret and Dufour effects are 
assumed small and negligible. 

3 The dried region contains the vapor resulting from the 
sublimation process and a small amount of residual air as 
compared to the vapor mass. 

4 The thermophysical properties remain constant but may 
be different for different regions. 

Region 1 
Frozen Region 

Fig. 1 Schematic description for the sublimation problem 
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5 The Clapeyron equation and ideal gas law are assumed 
valid at the interface. 

From the above assumptions, the sublimation process can 
be formulated by the following equations: 

aw, t) a2r,(x, t) 
dt " " ' dx2 

dT2(x, t) d2T2(x, t) 

dt 
= « 2 

dx2 

s(t)<X<<x> (1) 

0<x<s(t) (2) 

dC(x, t) 
__ 

d2C(x, t) d2P(x, t) 
• + K • 

dx2 dx2 

0<x<s(t) 

dP(x, t) d2P(X, t) 
0<x<s(t) 

(3) 

(4) 
dt " dx2 

where equations (1) and (2) describe the temperature 
distribuiton in the frozen and dried regions, respectively. 
Equations (3) and (4), based on the theories described above 
and Luikov system (Luikov, 1966, 1975), describe the concen
tration and pressure fields in the dried region, respectively. It 
should be noted that the first term and second term on the 
right side of equation (3) represent the Fick and Darcy laws, 
respectively. 

The boundary and initial conditions are 

Ti(x,0)=Tl(<x>,t) = T0 (5) 

T2(0,t) = Ts (6) 

C(0,t)=Cs (7) 

P(0,t)=Ps (8) 

At the sublimation interface the conditions are 

Tl(.s,t) = T2(s,t) = Tv (9) 

C(s,t)=Cv (10) 

P(s,t)=Pv (11) 

where Tv, Cv, and Pv are the interface temperature, concen
tration, and pressure, respectively, and are assumed to be con
stant but unknown. 

The Clapeyron equation relating the latent heat of sublima
tion to the interface conditions, from equation (8) in (Lin, 
1982), is 

-^l. = ap\±.(±.±)] (12) 
C3T}

 ylR0\T3 Tv)\ 
By applying the ideal gas law at the interface, we have 

Pv = CVR$TV 

The energy and moisture balances at the interface yield 

(13) 

K7 

dT2(s, t) 

dx 
+ K, 

BTjjs, t) 

dx 
--eCnMJ 

ds(t) 

dt 

dC(s, t) dP(s, t) ds(t) 
a„, ; hK ; = ( C 0 - C „ ) 

dx dx dt 

(14) 

(15) 

Solution of the Problem 

We introduce the nondimensional similarity variable 

x 

2\fa7t 
(16) 

into equations (1)—(15) and define a new variable Z(»/) as given 
in (Boles and Ozisik, 1983) which decouples equations (3) and 
(4) 

Z(V)=P(ri)+l3C(ri) (17) 

where 

j3 = - (18) 

The location of the interface is assumed to be given by 

*(0=2XVa7jf (19) 

where X is an unknown constant to be determined during the 
solution. 

With the introduction of the new variables -q and X, we note 
that the dried region corresponds to 0 < i\ < X, and the frozen 
region corresponds to X < t] < oo. The problem is trans
formed to a system of ordinary differential equations for Tx, 
T2, P, Z with variable coefficients subject to the transformed 
boundary and interface conditions. This system can be solved 
exactly, and the solution for C{rj) is obtained from equation 
(17). After substituting the above solutions into the interface 
equations and performing the necessary manipulat ions, we 
obtain the four transcendental interface equations. By using 
the nondimensional parameters defined in the nomenclature, 
the solutions are presented as follows: 

l(v)=e0 + (ev-e0) 
erfc(Va2ii7) 

e2(v)=es+(dv-es) 

erfc(Va2iX) 

erf (17) 

P(y)=Ps+(Pv-Ps) 

erf(X) 

V N / T U I / 

erf 
V A / L U T / 

\ < ) 7 < o o 

0 < ? ; < X 

0<i7<X 

(20) 

(21) 

(22) 

erf 

C(V)=CS + [A(PS-PV) + (C„-CS)] 
VVLV 

erf 
VVLV 

erf 

+ A{PV-PS) 
VVLUT/ 

V V L T T / 

0 < i ] < X (23) 

The interface conditions of energy and moisture become 
, 2 

*»(•££) 
- « 2 1 x 

0o-eQ / erf(X) 
' « 2 1 

erfc(Va2iX) 

VTTCQ^X 
(24) 

V L u [ A ( P s - P „ ) + ( C „ - C s ) ] e L« 

erf 
V V T I I / 

A ( / i „ - P s ) V L u p e 

erf (-TM 
- = v ^ ( C 0 - C „ ) X 

The Clapeyron equation becomes 

CA = exp[z,(l — 

and the ideal gas law becomes 

P„ = C„Rd„ 

-)] 

(25) 

(26) 

(27) 
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The nondimensionai constant X and nondimensionai 
temperature dv, pressure Pu, molar concentration C„ at the in
terface are then obtained by numerically solving the 
simultaneous equations (24)-(27). Once the interface con
stants are known, equations (20)-(23) readily yield the exact 
solution to the sublimation problem. 

Results and Discussion 

To study the effects of the Darcy and Fick laws on the 
vacuum sublimation process, the effects of the surface 
pressure and permeability on the nondimensionai interface 
position X are illustrated as a function of the Luikov filtration 
diffusivity Lup. The general trend is that X increases as Lu ,̂ in
creases. On the figures presented in this study, only the 
parameters whose values are different from the reference 
values are indicated. The selected reference values are: K2l = 
0.037, a21 = 0.134, A = 3, Lup = 300, C0 = 1.9 X 105, Lu 
= 0.1, Cs = 0.2, 0O = 0.9, 6S = 1.0, Ps = 0.6, E = 0.36 X 
10" 5 ,Z = 22.5, R = 0.987. 

Figure 2 illustrates the effects of the nondimensionai surface 
pressure Ps on the sublimation front position. Decreasing the 
surface pressure causes a higher pressure gradient through the 
dried region and increases the sublimation rate. The effects are 
very pronounced which reveal that Darcy flow is a significant 
component in the vapor transfer process. Lowering the sur
face pressure is an efficient way to accelerate the sublimation 
process. 

Figure 3 illustrates the effects of the nondimensionai 
permeability A on the sublimation front position. A porous 
medium with high permeability allows the vapor to move easi
ly through the medium and the sublimation process will take 
place more rapidly. This figure also shows that the Darcy law 
is a significant driving force for the sublimation process. 

It is noted that the sublimation front position is little af
fected by a wide range of variation of Lu. This reveals that the 
Fick flow is less important in the vacuum sublimation process. 

In conclusion the mechanisms of vapor transfer are gov

erned by both the Darcy and Fick laws. However, in the 
vacuum sublimation drying case the Darcy law is the dominant 
driving force. To accelerate the sublimation dehydration, the 
ambient pressure and vapor concentration should be main
tained at low values. Also, we note that the present system ac
counting for the Darcy and Fick laws simultaneously is a more 
complete model of the vacuum sublimation dehydration 
problem. 
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Discrete-Ordinate Solutions of the Radiation Transport 
Equation 

J. S. Truelove1 

Introduction 

Over the past decade, the discrete-ordinate method (Chan-
drasekhar, 1960) has been used by a number of researchers to 
solve multidimensional radiation transport problems in the 
field of engineering heat transfer (Hyde and Truelove, 1977; 
Truelove, 1978; Fiveland, 1984; Jamaluddin and Smith, 
1986). The method is based on a discrete representation for the 
angular variation in the radiation intensity. The angular 
quadrature is arbitrary, although restrictions arise from the 
need to preserve symmetries and invariance properties of the 
physical system. Moment-matching, completely symmetric 
quadratures are frequently selected because of their generality 
(Carlson and Lathrop, 1968). However, some quadratures do 
not match half-range moments, in particular the half-range 
first moment which is related to the one-way radiation flux. It 
is the purpose of this note to point out that low-order discrete-
ordinate solutions of the transport equation may be 
significantly improved when the quadrature is chosen to 
match the half-range first moment. These improvements are 
illustrated for the specific case of radiation in a two-
dimensional rectangular enclosure, examined recently by 
Fiveland (1984). 

Analysis 

Discrete-Ordinate Equations. Discrete-ordinate equations 
in multidimensional geometry are derived elsewhere (Hyde 
and Truelove, 1977. Briefly, the radiation transport equation 
for the intensity I(r, ft) is replaced by a set of equations for the 
intensities 7,(r) in a finite number of discrete directions ft,-. 
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The nondimensionai constant X and nondimensionai 
temperature dv, pressure Pu, molar concentration C„ at the in
terface are then obtained by numerically solving the 
simultaneous equations (24)-(27). Once the interface con
stants are known, equations (20)-(23) readily yield the exact 
solution to the sublimation problem. 

Results and Discussion 

To study the effects of the Darcy and Fick laws on the 
vacuum sublimation process, the effects of the surface 
pressure and permeability on the nondimensionai interface 
position X are illustrated as a function of the Luikov filtration 
diffusivity Lup. The general trend is that X increases as Lu ,̂ in
creases. On the figures presented in this study, only the 
parameters whose values are different from the reference 
values are indicated. The selected reference values are: K2l = 
0.037, a21 = 0.134, A = 3, Lup = 300, C0 = 1.9 X 105, Lu 
= 0.1, Cs = 0.2, 0O = 0.9, 6S = 1.0, Ps = 0.6, E = 0.36 X 
10" 5 ,Z = 22.5, R = 0.987. 

Figure 2 illustrates the effects of the nondimensionai surface 
pressure Ps on the sublimation front position. Decreasing the 
surface pressure causes a higher pressure gradient through the 
dried region and increases the sublimation rate. The effects are 
very pronounced which reveal that Darcy flow is a significant 
component in the vapor transfer process. Lowering the sur
face pressure is an efficient way to accelerate the sublimation 
process. 

Figure 3 illustrates the effects of the nondimensionai 
permeability A on the sublimation front position. A porous 
medium with high permeability allows the vapor to move easi
ly through the medium and the sublimation process will take 
place more rapidly. This figure also shows that the Darcy law 
is a significant driving force for the sublimation process. 

It is noted that the sublimation front position is little af
fected by a wide range of variation of Lu. This reveals that the 
Fick flow is less important in the vacuum sublimation process. 

In conclusion the mechanisms of vapor transfer are gov

erned by both the Darcy and Fick laws. However, in the 
vacuum sublimation drying case the Darcy law is the dominant 
driving force. To accelerate the sublimation dehydration, the 
ambient pressure and vapor concentration should be main
tained at low values. Also, we note that the present system ac
counting for the Darcy and Fick laws simultaneously is a more 
complete model of the vacuum sublimation dehydration 
problem. 
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Discrete-Ordinate Solutions of the Radiation Transport 
Equation 

J. S. Truelove1 

Introduction 

Over the past decade, the discrete-ordinate method (Chan-
drasekhar, 1960) has been used by a number of researchers to 
solve multidimensional radiation transport problems in the 
field of engineering heat transfer (Hyde and Truelove, 1977; 
Truelove, 1978; Fiveland, 1984; Jamaluddin and Smith, 
1986). The method is based on a discrete representation for the 
angular variation in the radiation intensity. The angular 
quadrature is arbitrary, although restrictions arise from the 
need to preserve symmetries and invariance properties of the 
physical system. Moment-matching, completely symmetric 
quadratures are frequently selected because of their generality 
(Carlson and Lathrop, 1968). However, some quadratures do 
not match half-range moments, in particular the half-range 
first moment which is related to the one-way radiation flux. It 
is the purpose of this note to point out that low-order discrete-
ordinate solutions of the transport equation may be 
significantly improved when the quadrature is chosen to 
match the half-range first moment. These improvements are 
illustrated for the specific case of radiation in a two-
dimensional rectangular enclosure, examined recently by 
Fiveland (1984). 

Analysis 

Discrete-Ordinate Equations. Discrete-ordinate equations 
in multidimensional geometry are derived elsewhere (Hyde 
and Truelove, 1977. Briefly, the radiation transport equation 
for the intensity I(r, ft) is replaced by a set of equations for the 
intensities 7,(r) in a finite number of discrete directions ft,-. 
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Fig. 1 Two-dimensional rectangular geometry 

Angular integrals involving the intensity are approximated by 
angular quadrature. Here the equations are presented for two-
dimensional rectangular geometry; the coordinate system is il
lustrated in Fig. 1. 

The discrete-ordinate representation of the radiation 
transport equation for an absorbing-emitting grey medium 
can be written as 

31: dlj 
(i) 

where /, [ = I(x, y; 1J,)] is the total radiation intensity at posi
tion (x, y) in the discrete direction fi, [= (/*,•, ?j;, £,•)], K is the 
absorption coefficient of the medium, and 7Ag is the total 
black-body radiation intensity at the temperature of the 
medium. 

If the surface bounding the medium is grey and emits and 
reflects diffusely then the radiation boundary conditions for 
equation (1) are given by 

at x=0: Ii = eIb:W+(l-e)/Tr J^ Wjliijll/, ^,->0 

a t x = X: I, = eIbiW+ (l-e)/ir J^ Wj pj ly, /*,-<0 

";= 

a t j = 0: Ii = eIbjW+(l-e)/Tr^ Wj\rij\Ij; Vi>0 

(2d) 

(2b) 

(2c) 

(2d) at y=Y: I, = eIbtV/+(l-e)/ic J^ Wjtij I/, r/,<0 
1J>0 

where /, is the intensity of radiation leaving the surface, e is 
the surface emissivity, Ibw is the total black-body radiation in
tensity at the temperature of the surface, and Wj is the angular 
quadrature weight associated with the direction ilj. 

The equation for conservation of energy in the medium is 
given by 

Ai:KIbii-KYiwiIi = q (3) 

where a is the volumetric rate at which energy is generated 
within the medium by modes of energy transport other than 
radiation. 

The net radiant heat flux vector is given by 

Q=EM'/n//.- (4) 

Table 1 Angular quadrature schemes for two-dimensional 
rectangular geometry (one jt-ij quadrant only) 

Designation 

S4 

S2 

SA 

Si 

V-
0.295876 
0.295876 
0.908248 

0.500000 

0.333333 
0.333333 
0.881917 

0.577350 

fi 

V 
0.295876 
0.908248 
0.295876 

0.500000 

0.333333 
0.881917 
0.333333 

0.577350 

* 
0.908248 
0.295876 
0.295876 

0.707107 

0.881917 
0.333333 
0.333333 

0.577350 

w 

IT/3 
TT/3 
TT/3 

7T 

ir/3 
ir/3 
TT/3 

IT 

Angular Quadrature Scheme. The choice of quadrature 
scheme is arbitrary, although restrictions on the directions J), 
and weights w, arise from the need to preserve symmetries and 
invariance properties of the physical system. Since there is no 
optimum general quadrature, moment-matching, completely 
symmetric quadratures are frequently selected because of their 
generality and any degrees of freedom are used to satisfy 
special conditions. If the geometric dimensionality is reduced, 
the restriction to complete symmetry can be relaxed. 

The following summation condition is satisfied by all 
quadrature schemes: 

2^W, = 4TT (5) 

The half-range-flux and diffusion-theory conditions are given 
by 

ZJ wi /*< = T 

, Wi iif = 4ir/3 

(6) 

(7) 

together with similar relations involving r;, and £; in the case of 
fully symmetric schemes. 

The S2 and S4 quadrature schemes used in this work are 
given in Table 1. The S4 quadrature is formed by the moment-
matching method suggested by Carlson and Lathrop (1968), 
the single degree of freedom, namely the selection of ji,, being 
used to satisfy the condition of equation (6). The scheme is 
fully symmmetric and satisfies both the half-range-flux and 
diffusion-theory conditions. The S2 quadrature scheme is 
symmetric in the (x, y) plane and satisfies the half-range-flux 
condition but not the diffusion-theory condition. Also shown 
in Table 1 are the S2 and S4 quadrature schemes used by 
Fiveland (1984), designated S2 and S4', respectively. Both 
schemes are fully symmetric and satisfy the diffusion-theory 
condition. However, neither scheme satisfies the half-range-
flux condition, the errors being 15 and 3 percent for S2 and S4, 
respectively. 

A wide variety of angular-quadrature schemes (including 
those used in this work) have been presented by Lathrop and 
Carlson (1965). 

Solution of Discrete-Ordinate Equations. The numerical 
solution procedure is based on the method of Carlson and 
Lathrop (1968) and is described in detail by Hyde and 
Truelove (1977). Briefly, the radiation transport equations for 
the intensities Ij(x, y) are reduced to conservative finite-
difference form using the control-volume method and 
weighted-diamond-difference relations. The equations are 
solved by recursive evaluation, the direction of integration be
ing in accord with the direction of physical propagation of the 
radiation beam as defined by fi,-, with iterative recalculation of 
boundary conditions and sources which depend upon the in
tensity distribution. 
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Fig. 2 Nondimensional wall heat flux profile at different optical 
thicknesses KX. Square enclosure (side X), black walls at zero 
temperature, absorbing-emitting medium at uniform temperature Tg. Ex
act solution (o) reported by Fiveland (1984). 

Results and Discussion 

Two cases of radiation heat transfer in the two-dimensional 
rectangular enclosure (Fig. 1) are examined. The particular 
test cases were selected because exact, or at least very precise, 
solutions of the radiation transport equation exist for com
parison with the discrete-ordinate solution. 

Figure 2 shows the wall heat flux profile for a square 
enclosure with cold black walls and absorbing-emitting 
medium at uniform temperature. This configuration has also 
been used as a test case by Fiveland (1984). The results are 
presented for three values of the optical thickness KX, namely 
0.1, 1.0, and 10.0. As noted by Fiveland, the S^ solution 
deviates significantly from the exact solution at each optical 
thickness. Furthermore, the S4 solution also deviates from the 
exact solution, particularly at the higher optical thicknesses. 
By comparison, the S2 and S4 solutions are in good agreement 
with the exact solution over the range of optical thicknesses. 
At the highest optical thickness, the S2 and S4 solutions 
overestimate the heat flux at the center of the wall by 15 and 3 
percent, respectively. These discrepancies, erroneously at
tributed to the "ray effect" by Fiveland, are in fact due to the 
failure of the Sj and S4 quadrature schemes to satisfy the 
half-range-flux conditions. Interestingly, the present S4 solu
tions are also superior to Fiveland's S6 solution. 

Figure 3 shows the wall heat flux profile for a square 

x/X 
Fig. 3 Nondimensional wall heat flux profile at different optical 
thicknesses KX. Square enclosure (side X), black walls: one hot at 
temperature Tw and three at zero temperature, absorbing-emitting 
medium in radiative equilibrium. Heat flux at hot wall. Exact (finite-
element) solutions (o) reported by Razzaque et al. (1983). 

enclosure with black walls, one of which is hot, and 
absorbing-emitting medium in radiative equilibrium (q = 0). 
The results are presented at three optical thicknesses, namely 
0.1, 1.0, and 2.0, for which precise finite-element solutions ex
ist. Only the S4 solution is in good agreement with the exact 
solution at each optical thickness. The S2 and S4 solutions 
deviate from the exact solution for the reasons stated above, 
while the S2 solution departs from the exact solution at the 
higher optical thicknesses because the S2 quadrature scheme 
does not satisfy the diffusion-theory conditions. 

Conclusions 

Discrete-ordinate solutions of the radiation transport equa
tion have been obtained with an S4 quadrature scheme con
structed so as to satisfy both the half-range-flux and diffusion-
theory conditions. The solutions are superior to those ob
tained with an alternative S4 quadrature which fails to satisfy 
the half-range-flux condition. 

The results of the present evaluation of the S4 discrete-
ordinate method in two-dimensional geometry are supported 
by the previous investigations of Hyde and Truelove (1977) for 
more complex multidimensional geometries. The discrete-
ordinate method can be readily applied to problems involving 
absorbing-emitting-scattering media. The method yields sub
stantial savings in computer time compared to zonal and 

1050/Vol. 109, NOVEMBER 1987 Transactions of the ASME 

Downloaded 17 Dec 2010 to 193.140.21.150. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



finite-element methods while at the same time achieving ac
ceptable engineering precision. 
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surface heat flux 
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1 Introduction 
Film boiling is the mode of boiling during which the hot sur

face is separated from the vaporizing liquid by a nearly con
tinuous film of vapor. Film boiling is usually considered a very 
undesirable boiling regime since it is a relatively quiet and inef
ficient mode of heat transfer, particularly as compared to 
nucleate boiling. It is customary to analyze the two-phase flow 
regime of laminar flow film boiling by assuming an idealized 
vapor film flow characterized by a smooth liquid-vapor inter
face. Since Bromley's (1950) first analytical approach to film 
boiling, various solutions have been presented for simple 
geometric configurations by Witte (1968), Epstein and Hauser 
(1980), and Witte and Orozco (1984). However, during stable 
flow film boiling, the wavy nature of the liquid-vapor inter
face and its role in local heat and mass transport have been 
largely ignored. 

The vapor interface is rarely stationary. Interfacial waves 
may substantially augment the heat transfer rates through
out the layer. Sheppard and Bradfield (1972) have shown ex
perimentally that the laminar film boiling regime during pool 
boiling around the forward stagnation point on a vertically 
oriented hemisphere-cylinder exhibits a continuously wavy in
terface for fluids near their saturation temperature, and that 
these waves emanate from the stagnation point region. The 
same authors developed an analytical solution for the liq
uid-vapor interface oscillation during pool boiling of 
Freon-11 near saturation assuming viscous dominance in the 
vapor layer and employing the concept of a load-per-unit-area 
on a stagnation-point interface element. They also obtained 
expressions for the mean vapor layer thickness, the oscillation 
frequency, and the mean heat flux. 

The present analysis treats stagnation point flow film boil
ing on a sphere immersed in a subcooled liquid. The effect of 
system parameters on the dynamic behavior of the liquid-
vapor interface as well as the response to step changes in the 
temperature and velocity fields are investigated. 

This study corrects and extends the theoretical analysis 
previously developed by Sheppard and Bradfield (1972). The 
new theoretical model not only allows for the influence of liq
uid velocity, vapor superheat, and liquid subcooling on the 
wavy nature of the liquid-vapor interface, but it also sheds 
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1 Introduction 
Film boiling is the mode of boiling during which the hot sur

face is separated from the vaporizing liquid by a nearly con
tinuous film of vapor. Film boiling is usually considered a very 
undesirable boiling regime since it is a relatively quiet and inef
ficient mode of heat transfer, particularly as compared to 
nucleate boiling. It is customary to analyze the two-phase flow 
regime of laminar flow film boiling by assuming an idealized 
vapor film flow characterized by a smooth liquid-vapor inter
face. Since Bromley's (1950) first analytical approach to film 
boiling, various solutions have been presented for simple 
geometric configurations by Witte (1968), Epstein and Hauser 
(1980), and Witte and Orozco (1984). However, during stable 
flow film boiling, the wavy nature of the liquid-vapor inter
face and its role in local heat and mass transport have been 
largely ignored. 

The vapor interface is rarely stationary. Interfacial waves 
may substantially augment the heat transfer rates through
out the layer. Sheppard and Bradfield (1972) have shown ex
perimentally that the laminar film boiling regime during pool 
boiling around the forward stagnation point on a vertically 
oriented hemisphere-cylinder exhibits a continuously wavy in
terface for fluids near their saturation temperature, and that 
these waves emanate from the stagnation point region. The 
same authors developed an analytical solution for the liq
uid-vapor interface oscillation during pool boiling of 
Freon-11 near saturation assuming viscous dominance in the 
vapor layer and employing the concept of a load-per-unit-area 
on a stagnation-point interface element. They also obtained 
expressions for the mean vapor layer thickness, the oscillation 
frequency, and the mean heat flux. 

The present analysis treats stagnation point flow film boil
ing on a sphere immersed in a subcooled liquid. The effect of 
system parameters on the dynamic behavior of the liquid-
vapor interface as well as the response to step changes in the 
temperature and velocity fields are investigated. 

This study corrects and extends the theoretical analysis 
previously developed by Sheppard and Bradfield (1972). The 
new theoretical model not only allows for the influence of liq
uid velocity, vapor superheat, and liquid subcooling on the 
wavy nature of the liquid-vapor interface, but it also sheds 
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UL 
Fig. Kb) 

Fig. 1 Model and coordinate system 

some light on the response of the system to perturbations in 
heat flux and superheat and into the conditions leading toward 
instances of liquid-solid contact during stable flow film 
boiling. 

Theoretical Model 
The basic flow model is shown in Fig. 1(a). The system can 

be idealized as a fluid mass moving in opposition to a gas layer 
spring and damper with the wave generation phenomenon and 
accompanying heat pulses serving as forcing functions. The 
model includes the following simplifications: 

• Pure incompressible liquid and vapor 
• Uniform body surface temperature 
• Vapor film thin compared to radius of the sphere 
• Negligible buoyant forces 
• Negligible surface tension effects 
• Negligible inertia effects in the vapor 
9 Heat transfer from the heater to the interface by conduc

tion only, with a linear temperature profile 

As suggested by Bradfield (1965), the equation of motion 
for the liquid-vapor interface resulting from a balance of 
forces in the vicinity of the lower stagnation point is 

-PL+P (1) 

where PST is the liquid-side static pressure at the interface, PL 

is liquid-side total pressure, and p is the pressure distribution 
in the vapor layer. 

The liquid velocity at the liquid-vapor interface is obtained 
from 

UL(8) ={3/2)Ua s ine (2) 

This assumption is rather common in studies of forced convec
tion film boiling. It simply implies that the drag of the vapor 
film upon the adjacent liquid is negligibly small. In the stagna
tion point neighborhood, the liquid-side total pressure (Fig. 
lb) at a point (r, 6) on the interface can be written as 

PL = PST (r,6)+U2pL(Ui~Ui( 6)) (3a) 

or in terms of the stagnation pressure and by using equation 
(2) 

PL = (PSTAC - AhpLg) + ^ - ^ ( l - — s i n 2 d) (3b) 

For any angle i 
2 V 4 / 

Ah and y can be written, respectively, as 

Ah = 
(R + 5)sin2 6 

and r=(R + 8) sin 6 (4) 
1 + cos 6 

In the vicinity of the forward stagnation point Ah can be ap
proximated by 

Ahsw^w (5) 

Equation (5) differs from Bradfield's result by a factor of 1/2, 
due to an algebraic error we discovered in his analysis. Thus, 
the liquid-side pressure at a point (r, Q) can be written as 

Pt=(PsTAG_2(^^)+^(1-^-^W") (6) 

Taking into account the fact that 5 < <R, the equation of mo
tion for the liquid-vapor interface results after combining 
equations (1) and (6) 

p = Ps •('-r) PL U
2 

R 
g+8 . 9 m £)<" 

In the stagnation-point region, the vapor velocity field can 
be expected to be dominated by the mass addition at the 
evaporating interface. Hence, the assumption is made that the 
vertical component v of the vapor layer velocity is independent 
of r. Considering a cylindrical coordinate system (Fig. la), the 
Navier-Stokes equations read 

Continuity 

r-momentum 

d dv 
^ - ( ™ ) + ^ -
dr dz 

= 0 (8) 

dll du du 
—— + u + v 

dt dr dz 

1 dp rd 
h V\ 

dr Idr 

/ I d(ru)\ d2u 1 

\~~d?~)+^zr\ (9) 

z-momentum 
dv dv dv 

——(- u h v 
dt dr dz 

dp 

dz 

f d / dv \ d2v 1 

(10) 

The solution for the vapor layer pressure evaluated at the in
terface 5 must match the vapor-side pressure in equation (1). 
This matching requirement yields an equation of motion for 
the liquid-vapor interface which can then be solved for the 
equilibrium vapor thickness and heat flux. Assuming that v is 
not a function of radial position or that 
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v^v(r); 
dv 

~-4>(z, t) (11) 

where 4>(z, t) is an arbitrary function of z and time. F rom con
tinuity we obtain that 

>U, 0 (12) 

With the help of the momen tum equations on the other hand , 
we develop a viscous solution for the vapor pressure subject to 
the following boundary condit ions: 

a t r = 0: w = 0 

atz = 0: u = 0, v = 0 (13) 

a t r = 0 a n d z = 5: u = 0, v = 5—V 

Thus , the vapor-side pressure reads 

prL 

•t(t)+pc(z, t) (14) 

where c is an arbitrary function of z and time, and \j/(t) is 
given by 

tf(0=-
1 

<j>2 + v 
d<j> 

(15) 
dt 2 r " dz ' dz2 

Comparing the coefficient of the r2 term in equation (14) with 
that of equation (7), we obtain with the use of equation (15) 
that 

d2<t> 
th^ + v v -

dt 
4>2 + v • 

dz dz2 

"g + 6 4 pLTg + 5 | 9 Ujl 
R pi 2 8 R J 

(16) 

Neglecting the unsteady and inertial terms and applying the 
boundary conditions atz = 0andz = 5, equation (13), equation 
(16) becomes 

after integrating thrice with respect to z. 
Attention is now turned to performing an energy balance on 

a differential film element as shown in Fig. 1(b). This balance 
yields 

dq'=dq^p+dq'L (18) 

where dq^p is the energy required to form vapor, and dq[ is 
the energy conducted into the subcooled liquid when 
TL < r s a t . In the vicinity of the forward stagnation point , 
equation (18) can be expanded as 

AT„ dT 
k =h>gPV- dz lz = S 

(19) 

The heat transferred into the bulk liquid is obtained by us
ing the solution to the energy equation according to Sideman 
(1966). Sideman's solution is based on the notion that the heat 
transfer in the liquid is confined to a thin layer near the liq
uid-vapor interface. Thus, the temperature gradient 
dT/dz lz=6 is given by 

dT 

dz 

- AT, sin2 

r 2 Ret ( 2 1 , V 
br 1 cos 6 + cos3 6} 
L 3 C/„ V 3 3 / 

(20) 

In the limit as 0—0 equation (20) reduces to 

dT 

~Tz~ 

- 2 A T , 

V 3 n ) 
(21) 

Therefore, the velocity of vaporization becomes (equation 
(19)) 

V=-
1 

hr, l/gP 

AT,, 

Ra \ 'A 

U„ 

(22) 

Finally, substitution of equation (22) into equation (17) yields 
the viscous dominant equation of motion for the l iquid-vapor 
interface 

^ 1 i 

'53 ' ' V (23) 

where 

Ba=6vR 
( - ) * , = -

, , / 2 Ra \ 

Bi 
6vRkAT„ 

K %PL 
B,=g + -

9 Uj 

4 ~R~ 
(24) 

The equilibrium vapor layer thickness is given by the solution 
to 

V B, 
(25) 

Equat ion (25) is obtained directly from equation (23) by 
neglecting the terms with time derivatives. Note that setting 
[/„ = 0 and ATL = 0 one obtains that the saturated pool boil
ing equilibrium thickness is given by 

1.19 
VlvRKAT, 

*] (26) 

This result is 19 percent higher than Bradfields's solution. 
Bradfield did not account properly for the liquid-side 
hydrostatic pressure at point (r, 6) as previously explained. 

The dynamic behavior of the film thickness is determined by 
solving equation (23) numerically with the help of the fourth-
order Runge-Kutta method (Wolford, 1970). The step size 
used was continuously checked to avoid any numerical errors 
since the frequency of osci l la t ion of the liq
uid-vapor interface is very sensitive to changes in system 
parameters. 

Results and Discussion 
Figures 2(a) and 2(b) illustrate the dynamic response of the 

l iquid-vapor interface to a step change in heater temperature 
for both pool boiling and flow boiling of Freon-11 at satura
tion, respectively. In response to a change in vapor superheat, 
the l iquid-vapor interface shows an oscillatory behavior 
a round a new equilibrium vapor thickness. It is worth noting 
that for the case of flow boiling (Fig. 2b) the equilibrium 
vapor layer is thinner than that of pool boiling (Fig. 2a). The 
liquid velocity also causes a decrease in the amplitude and an 
increase in the frequency of oscillation of the vapor layer. 
Consequently, equilibrium is reached faster. 

Figures 2(a) and 2(b) also illustrate the effect of a step 
change in vapor superheat on the heat transfer coefficient at 
the surface of the heater. Since the heat transfer coefficient is 
inversely proport ional to 8 (the vapor layer thickness) higher 
heat transfer coefficients are obtained for the case of flow 
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Fig. 2 Dynamic response of the liquid-vapor interface to a step change 
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Fig. 3 Dynamic response of both vapor film layer and heat transfer 
coefficient triggered by a series of step changes in heater temperature 
during flow film boiling 

boiling. Liquid subcooling has the same relative effect, but to 
a lesser degree. 

Figures 3(a) and 3(b) show the oscillatory behavior of the 
liquid-vapor interface triggered by a series of step changes in 
heater temperature during flow boiling. The response of the 
vapor layer is very sensitive to the degree of excitation (current 
value of the amplitude of oscillation) of the vapor layer at the 
time of change in system parameter (velocity or temperature). 
For instance, the largest amplitude of oscillation toward the 
heated surface is obtained if a decrease in vapor superheat or 
an increase in either liquid velocity or subcooling is imposed at 
the time when the vapor layer is at the farthest position from 
the sphere surface. It was also found (Fig. 3d) that the 
amplitude of oscillation around the equilibrium position is not 
symmetrical. This lack of symmetry is attributed to the fact 
that as the liquid-vapor interface moves toward the heated 
surface, higher heat fluxes accompanied by higher viscous 
dissipation occur. As the vapor interface moves toward the 
liquid, the viscous dissipation in the vapor layer decreases; 
thus, larger amplitudes of oscillation are produced as the 
liquid-vapor interface moves away from the heated surface. 
Based on the above, it is understood that a prediction of the 
amplitude of oscillation of the vapor film due to a change in 
system parameters is dependent on the degree of excitation of 
the vapor layer. As long as the disturbances in both the 

temperature and velocity fields are small, the vapor layer will 
oscillate very close to its equilibrium position. The driving 
force that sets the interface in motion would have to be pro
portional to a change in equilibrium position (A50). Figure 
4(a) illustrates how the vapor layer reacts to changes in 
equilibrium position A<50. The symbol A stands for the 
displacement that the interface undergoes in response to 
changes in system parameters, and is taken as positive toward 
the heated surface. Thus, if the condition of the heated surface 
is characterized by assigning it a surface roughness (Fig. 4b), 
the magnitude of the oscillations created by changes in 
equilibrium position would allow one to predict whether in
stances of liquid-solid contacts are possible. These instances 
of liquid-solid contact would enhance the heat transfer rates 
and could also lead toward the collapse of the vapor layer. 

Conclusion 

Overall, the simple model presented in this study in connec
tion to flow film boiling from a sphere can be used to reveal a 
number of important characteristics relevant to the dynamic 
response of a liquid-vapor interface. It was shown that 
changes (controlled or undesired) in the liquid velocity or the 
vapor superheat initiate large oscillations in the vapor film 
thickness and the heat transfer coefficient. In addition to the 
obvious fact that these oscillations affect the heat transfer pro-
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cess from the sphere to the liquid, they might create contact 
"spots" between the liquid and the heater. The realization of 
this fact depends on the surface characteristics of the sphere. 
For prescribed surface roughness for example, Fig. 4 can be 
used to predict if contact spots between the liquid and the 
sphere surface are likely to occur. The model does not account 
for cases where the response is unstable. We believe that if the 
initial response of the vapor layer to a given perturbation is 
such that the amplitude of oscillation exceeds the equilibrium 
thickness, it is possible for the vapor layer to collapse. 
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Introduction 
The horizontal cylinder is the geometry in which the prob

lem of evaluating the peak nucleate boiling heat flux qmax 

(commonly called the burnout heat flux) has been most 
studied. Countless data have been presented but many are sub
ject to a variety of nuisance variables. The objective of the 
present work is to identify experimentally the range of in
fluence of two of these nuisance variables: sidewall blockage 
and immersion depth. 

The existing hydrodynamic predictions of qmax envision 
either an infinite flat plate beneath an infinitely deep liquid 
bath, or a finite heater immersed in a bath of infinite extent 
(see, e.g., reviews by Lienhard and Dhir, 1973, and by 
Lienhard and Witte 1985). Attention has been given to such 
effects in other geometries (for example, Westwater et al., 
1986, have looked at sidewall blockage effects on spheres and 
immersion effects on large flat plates). However, the effect of 
nearby walls or depth of immersion on a horizontal cylinder 
has not been systematically documented. 

Our aim here is to determine, experimentally, how qmm is 
altered when a long horizontal cylinder of diameter D is 
centered between vertical sidewalls separated by a distance W 
and located a distance H below the liquid surface. 
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Experiment and Results 
Figure 1 shows the relatively conventional apparatus that we 

used to measure gmaK in methanol at 1 atm, using 0.813-mm-
dia Nichrome wires as electric resistance heaters. The heaters 
were mounted as shown in Fig. 2 and supplied with d-c power. 
Tapered copper electrodes were electroplated on the ends of 
each wire to eliminate vapor hangup around the ends, and to 
guarantee that burnout occurred at random locations on the 
wire. Each wire was inspected for flaws, washed with 
detergent soap, rinsed in water, and finally rinsed with the 
fluid to be boiled, before it was installed. The distance be
tween the heater and the bottom of the slot was > >D, H, or 
W, and liquid was admitted to the test region through the 
bottom. 

The liquid was preheated to saturation with a hot plate, 

which was turned off about a half minute before each reading. 
The heater was then rapidly powered up to about 90 percent of 
<7max, and finally brought to burnout over another 15 to 30 s. 
The probable error of the gmRX data was always within 3.6 
percent. 

Seventy-three such observations were made, with only two 
or three observations on any one heating element. Complete 
details of the experiment are given by Elkassabgi (1986). 

The Laplace number R', based on the cylinder radius R 

R'^R[g(pf-Pg)/or/2 (1) 

was 0.157 for the heaters. pf and pg are the saturated liquid 
and vapor densities, respectively, g is the acceleration of gravi
ty, and a is the surface tension. This value is in a range where 
the hydrodynamic theory of burnout is completely applicable. 

The uncorrelated data are shown in Fig. 3. The ordinate has 
been normalized using the measured value of qn = 0.765 
MW/m2 , in the unobstructed container-an average of eight 
observations which gave an rms deviation of only 4.5 percent. 

Correlation of Results 

To help make the pattern of these seemingly scattered data 
in Fig. 3 more evident, we include lines that display their 
trends. (The lines shown here are not our original guesses, but 
rather representations of the final correlation developed 
below.) 

It is clear that, at each value of W/D, there is a value of 
H/D above which H/D ceases to influence <7max/<7max,o°- We 
determine, by least-squares fitting, that in this deep-liquid 
region 

= 0.58 + 0.029-
W 

D 
(2) 

(/max 

with an rms deviation of only ±5.25 percent. This expression 
is valid only up to <7max/<7max,oo = 1, which occurs when 
W/D= 14.76. For larger values of W/D, the data show that 
the sidewall effect is abruptly lost, for the deep-liquid data. 
Equation (2) is restricted to the deep-liquid range of 
H/D> ( 2 5 - 1.23 W/D). 

Using a new independent variable, x=(H/D~25 
+ 1.23 W/D), suggested by the shift of the deep-liquid limit, 
we then correlate all the data as shown in Fig. 4. The data for 
which x is negative in Fig. 5 are ones that are influenced by 
H/D. A final least-squares fit of these data yields 

^ = 0.70 + ( l -0 .70)e 0 0 8 x (3) 

which represents them within an rms deviation of only ±5.62 
percent. It is restricted to the ranges 2.46< WVZ>< 14.76 and 
1.85 <H/D < (25 + 1.23 W/D), where the lower bound is set by 
the limits of our data, and the upper bound is set by a change 
in the process. 
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Discussion 
The correlations above are strictly empirical and not based 

on any physical considerations. It therefore behooves us to ask 
what they suggest about the physical character of the problem. 

The influence of sidewalls is to reduce qmm, but only when 
they are less than 14.76D apart. It is entirely likely that the 
escaping vapor jets are reduced in size in a confined space, in
creasing the vapor velocity at a given heat flux and hastening 
the Helmholtz collapse of the jets. 

However, the apparent linearity of the effect must surely 
cease when the walls are placed very close to the heater-as 
W/D approaches 1. Therefore we strongly warn against using 
the present results for W/D below the limits of the present 
data (our apparatus did not permit us to go to W less than 
2A6D). 

One would expect a very small H/D to give the jets direct 
access through the liquid into the vapor region above. 
However, to predict the effect (upon the hydrodynamic 
stability of the jet) of providing them with this escape route 
becomes quite complicated when the dynamics of the vapor jet 
wall become coupled with those of the horizontal free surface. 

The depth effect is very small by the time W/D reaches 
14.76, and our experiments show that it cannot be discerned at 
all in an open bath. We also note that the immersion-depth ef
fect becomes stronger when it is coupled with the sidewall 
effect. 

Conclusions 
1 When H/D> (25-1.23 W/D) and 2.46<W/D<14.16, 

qmax is given by equation (1). 
2 When 1.85 <H/D< (25 - 1.23 W/D) and W/£>< 15.76, 

qmax is given by equation (3). 
3 When W/D> 14.76, qmRX appears to be uninfluenced by 

the bath depth or width. 
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Additional Data on Subcooled Boiling of Heptane 

H. Miiller-Steinhagen1 

In a recent publication, Miiller-Steinhagen et al. (1986) 
reported an investigation on forced convective heat transfer to 
subcooled heptane for two different heater geometries, name
ly for a heated rod in an annulus and for a heated coiled wire 
in crossflow. Additional experiments were performed extend
ing the range of Reynolds numbers by more than one order of 
magnitude to lower Reynolds numbers and higher Reynolds 
numbers for the annulus and the coiled wire, respectively. 

Annular Flow 
Figure 1 shows measured and calculated heat transfer coef

ficients a for the annulus as a function of the heat flux q. The 
experiments were performed for a bulk temperature Tb = 
37°C and a system pressure/) = 1.07 bar with mass velocities 
m between 10 kg/m2s and 20 kg/m2s. A convective heat 
transfer region and a subcooled boiling region can be 
distinguished according to the influence of heat flux on the 
heat transfer coefficient. While it is well known (for example 
Collier, 1972) that the fully developed subcooled boiling heat 
transfer coefficient is quite independent of mass velocity, it is 
noteworthy to comment on the fact that for the present 
measurements the convective heat transfer coefficient depends 
on the heat flux rather than on the mass velocity. With the 
Grashof number being much larger than the Reynolds number 
(Gr/Re2 > 100 for all annular measurements), the influence of 
forced convection may be neglected as compared to the in
fluence of natural convection. This result is also demonstrated 
in Fig. 3, curve I, which shows that for the annular flow 
assembly, forced convection is only of minor influence, as 
long as the Reynolds number is sufficiently small. 

One of the motivations for the present investigation was to 
verify whether the developed subcooled boiling heat transfer 
coefficient at high heat fluxes remains constant, even if the 
flow velocity is varied over a wide range and the 
hydrodynamic conditions change from turbulent to laminar 
flow. In Fig. 3, curve II, measured heat transfer coefficients 
for fully developed subcooled boiling are shown over a wide 
range of Reynolds numbers ranging from 4 to 35,000. No in
fluence of the Reynolds number on the coefficients is to be 
noticed. The opposite result is predicted by a correlation 
published by Shah (1983). The correlation suggested by Chen 
(1963), which already agreed favorably with previous data 
reported by Miiller-Steinhagen et al. (1986), was also in good 
agreement with the present data, if the appropriate correlation 
for convective heat transfer is used. Since natural convection 
was the dominant convective heat transfer mechanism for the 
present measurements with annular flow, the correlation for 
the local Nusselt number Nux by Touloukian et al. (1948) 

Nux = 0.5545(GrPr)0-25 

may be applied to predict the heat transfer coefficients (see 
Fig. 1). 

Figure 1 shows furthermore that the measured data for 
medium heat fluxes are higher than the calculated values. This 
and the observation that boiling started at surface 
temperatures well below the saturation temperature are at
tributed to residual dissolved gases (see Miiller-Steinhagen et 
al., 1986) in the heptane, which was not completely degassed 
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However, to predict the effect (upon the hydrodynamic 
stability of the jet) of providing them with this escape route 
becomes quite complicated when the dynamics of the vapor jet 
wall become coupled with those of the horizontal free surface. 

The depth effect is very small by the time W/D reaches 
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medium heat fluxes are higher than the calculated values. This 
and the observation that boiling started at surface 
temperatures well below the saturation temperature are at
tributed to residual dissolved gases (see Miiller-Steinhagen et 
al., 1986) in the heptane, which was not completely degassed 
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Fig. 3 Influence of Reynolds number on convective heat transfer and 
subcooled boiling heat transfer 

to subcooled boiling may only be detected at the highest heat 
fluxes, where the influence of mass velocity gradually 
diminishes. Figure 3, curve III, presents the influence of the 
Reynolds number on the heat transfer coefficients for the 
coiled wire, indicating laminar flow as the exponent n in a ~ 
Re" is always less than or equal to 0.5. 

The measurements presented in the previous report (Miiller-
Steinhagen et al., 1986) could be predicted with satisfactory 
accuracy using the entrance region solution for flow past flat 
plates. For the data measured at higher Reynolds numbers, 
this procedure is not successful, since flow separation occurs 
along the wire circumference. Correlations derived for the 
flow past cylinders by McAdams (1954) also fail in predicting 
correct values for the coil, if either wire diameter dw or 
equivalent diameter deq is used as a basis in the Reynolds and 
Nusselt numbers. In order to obtain satisfactory results, a 
diameter which is approximately 2.7 times the wire diameter 
has to be used in these correlations. It is felt that this result 
must depend on the dimensions of the coil, such as wire 
diameter, coil diameter, and number of coils per unit length. 
This should be determined in future investigations. 

before the experiments. At low heat fluxes (no boiling) and at 
high heat fluxes (fully developed subcooled boiling) 
measurements and calculated values are in good agreement. 

Most of the measurements presented in this note were 
measured with decreasing heat flux; however, there are some 
data given in Fig. 1 that were obtained with increasing heat 
flux. These data show the presence of a boiling hysteresis 
which could not be detected during the previous measurements 
with higher Reynolds numbers. This observation is a further 
support for the hypothesis stated by Murphy et al. (1972) and 
Miiller-Steinhagen et al. (1986) that hysteresis effects decrease 
with increasing flow velocity. 

Coiled Wire 

For the coiled wire, a widely extended range of convective 
heat transfer is observed in Fig. 2, as compared with the 
previous experiments at lower Reynolds numbers. A transition 
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